Strategies for Using Critical Thinking in Your Classroom

Implementing CT in your classroom can be very simple or could involve very detailed methods. If you are a novice instructor or have little experience with using CT for deeper learning, I recommend that you start small and simple. The following list offers strategies that have been shown to work in classrooms from kindergarten to graduate school.

These strategies are listed roughly by relative ease of use & effectiveness.

1. **Assign Students to Use and Apply What They Are Learning**

 This is a powerful tool for learning and teaching students to use CT because it leads to hands-on and brains-on tasks (e.g., what educational theorists call active engagement).

2. **Ask Critical Thinking Questions in Your Assignments, Discussions, and Exams**

 Move beyond the common “facts” level (“what” level) sorts of content questions to demand things like comparison, analysis, synthesis, planning, prediction, trouble-shooting, etc. For example, make assignments that require research, problem solving, decision making, etc. that go beyond what is in the textbook. (See Appendix C: Examples of Critical Thinking Skills for examples of CT issues and Appendix D: Examples of Critical Thinking Question Stems for help with developing CT questions.)

3. **Assess Critical Thinking Explicitly**

 Students learn and do what is assessed, so try one of the following approaches:

 A. Provide criteria and standards for good thinking in your discipline. Rubrics are an easy and extremely powerful way to define and communicate these.
 B. Assign students to get directly involved with assessment via peer review. Taking the role of evaluator forces students to think about their (and others’) thinking (metacognition). Hold students accountable for their peer assessments.
 C. Where appropriate, use ill-structured\(^1\), real-world, authentic problems that may have several good solutions.
 D. Provide feedback to students on their CT ability (using those same rubrics mentioned previously is a good way to handle this approach).
 E. Model good reflection and then ask your students for reflection on the content you are teaching, how well they are learning, their assumptions, changes in their thinking, etc. (see examples of reflection questions at the bottom section of Appendix D: Examples of Critical Thinking Question Stems.

\(^1\) An ill-structured problem is messy, real world (authentic), complex, yields answers based on judgment, often has multiple “right” answers, and is almost always not found in the textbook. For example, recommend whether the city should budget for sidewalk repair, street repair, or another police officer. Ill-structured problems are not convergent problems with just one correct solution or personal preference questions that have as many answers as you have students.
4. Provide direct instruction in thinking like a _______: {Historian, Welder, Nurse, etc.}

 a. Explain what CT is, what it means in your discipline, and give examples.
 b. Model CT by thinking aloud to walk your students through your thinking (e.g.,
 “when I need to decide which approach to take with this problem I consider x.”)
 c. Ask the whole class to walk through some CT using your discipline’s content.