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CHAPTER 1 
FOUNDATIONS OF TRIGONOMETRY 

 

Figure 1.0. 1 

Chapter Outline 

1.1 Degree and Radian Measure of Angles  

1.2 Right Triangle Trigonometry 

1.3 The Unit Circle 

1.4 The Six Trigonometric Functions 

1.5 Trigonometric Identities 

1.6 Beyond the Unit Circle 

Introduction 

Chances are good that you have some experience with Geometry, which is the study of shapes 

and surfaces (generally in 1, 2, or 3 dimensions).  Trigonometry narrows that focus to the study 

of triangles – particularly, the properties and relationships of sides and angles – and how these 

relationships can help define attributes of curves.  In this chapter, six basic trigonometric 

functions are introduced.  These functions relate measurements of sides and angles, with an 

interesting connection to circles.  While six new functions may sound like a lot to learn, these 

functions exhibit numerous interconnecting properties so they will be simple to remember and 

utilize.  
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Section 1.1 focuses on angles – what they are, how they are measured, and how they relate to 

rotation.  Some of the terminology here may seem familiar, while some may be new.  An 

important note – in deciding whether you prefer degree or radian measures, keep in mind that 

both have important uses in the world.  Don’t completely embrace one while rejecting the other. 

Trigonometric ratios are presented in Section 1.2, and that definition is extended in Section 1.3 

as we move slowly to defining and regarding these ratios as ‘Trigonometric Functions’!  After 

the trigonometric ratios (as they relate to right triangles) are presented in Section 1.2, the sine 

and cosine functions will be defined for all angles in Section 1.3 using the Unit Circle.  Then, 

Section 1.4 completes the definition of trigonometric functions, using the Unit Circle, by 

introducing tangent, cosecant, secant, and cotangent functions.  Section 1.5 explores connections 

among these functions and develops the Pythagorean identities.  Lastly, Section 1.6 expands the 

connection of trigonometric functions and the Unit Circle to circles of any radius. This general 

notion of trigonometric functions will be critical to exploring practical applications of 

trigonometric functions. 
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1.1 Degree and Radian Measure of Angles  

Learning Objectives 

 Define revolution, degree, and radian measures of angles. 

 Convert between revolutions, degrees, and radians. 

 Determine coterminal angle measures. 

 Determine supplementary and complementary angle measures. 

 Graph angles in standard position. 

We begin with some basic definitions from Geometry.  A ray, often described as a half-line, is a subset of 

a line that contains a point P  along with all points lying to one side of P .  The point P  from which the 

ray originates is the initial point of the ray.  The arrowhead indicates that the ray goes on forever. 

Figure 1.1. 1 

 

When two rays share a common initial point, they form an angle and the common initial point is called 

the vertex of the angle.  Following are two angles, the first with vertex R and the second with vertex S. 

Figure 1.1. 2 

 

Figure 1.1. 3 

 

The two figures below also depict angles.  In the first case, the two rays are directly opposite each other 

forming what is known as a straight angle.  In the second, the rays are identical, so the angle is 

indistinguishable from the ray itself. 

Figure 1.1. 4 

 

Figure 1.1. 5 
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The measure of an angle is a number that indicates the amount of circular rotation that separates the rays 

of the angle.  There is one immediate problem with this, as the following pictures indicate. 

Figure 1.1. 6 

 

Figure 1.1. 7 

 

Which amount of rotation are we attempting to quantify?  What we have just discovered is that we have at 

least two angles described by this diagram.1  Clearly, these two angles have different measures because 

one appears to represent a larger rotation than the other, so we must label them differently.  We often use 

lower case Greek letters such as   (alpha),   (beta),   (gamma), and   (theta) to label angles.  For 

instance, we have 

Figure 1.1. 8 

 

An angle measure refers to a portion of a full revolution, or full rotation.  An angle measure may also be 

stated in units of degrees or radians. 

Revolution Measure 

The simplest way to describe an angle measure, or the amount of circular rotation, is to describe it as the 

proportion of one full revolution, ‘Rev’ for short.  The following angles show measures of one revolution, 

half a revolution, and a quarter of a revolution. 

 
1 The phrase ‘at least’ will be justified in short order. 
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Figure 1.1. 9 

 

1 Rev 

Figure 1.1. 10 
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 Rev 

Figure 1.1. 11 

 

1

4
 Rev 

As seen in the previous figure, we use the small square to denote a right angle, as is commonplace in 

Geometry.  We can determine the revolution measure of any angle if we know the proportion it represents 

of a full revolution. 

Degree Measure 

One commonly used system to measure angles is degree measure.  The measure of an angle in degrees is  

denoted by a small circle displayed as a superscript.  One complete revolution is 360 degrees, 360°, or 
1

1
360

  Rev.2  Degree measures of angles are determined by their proportion of 1 Rev 360  .  Thus, 

half of a revolution (a straight angle) measures  1
360 180

2
  , a quarter of a revolution measures 

 1
360 90

4
  , and so on. 

Figure 1.1. 12 

 

1 Rev 360   

Figure 1.1. 13 

 

 1
360 180

2
   

Figure 1.1. 14 

 

 1
360 90

4
   

As seen in the previous figure, a right angle measures 90°.  If an angle measures strictly between 0° and 

90° it is called an acute angle and if it measures strictly between 90° and 180° it is called an obtuse 

angle.  An angle with no rotation is measured as 0°.  We can determine the degree measure of any angle 

if we know the proportion it represents of a full revolution or 360°.3 

 
2 The choice of 360 is most often attributed to the Babylonians. 
3 This is how a protractor is graded. 
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Radian Measure 

Before defining radian measure, we revisit the number 3.14159   .  The circumference C  of a circle 

of radius r  is 2C r .  This tells us that for any circle, the ratio of its circumference to its radius is a 

constant and that constant is 2 . 

In radian measure of angles, one complete revolution is 2  radians, or 1 radian is 
1

2
 Rev.  Thus, half 

of a revolution measures  1
2

2
  , a quarter of a revolution measures  1

2
4 2

  , and so on.  As 

explained later, no symbol is used to denote radians.  Any number written as an angle measure is assumed 

to be in radians, but we may include the identifier ‘radians’ for clarity. 

Figure 1.1. 15 

 

1 Rev 360 2   

Figure 1.1. 16 
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Figure 1.1. 17 
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Now we develop a way to visualize an angle with any radian measure.  First, an angle with its vertex at 

the center of a circle is called a central angle.  For a central angle, there is a corresponding arc on the 

circle, and we say that the central angle is subtended by that arc.  Consider a central angle measuring   

radians, or 
2




 Rev, in a circle of radius r  where the central angle is subtended by an arc of length s . 

Figure 1.1. 18 

 

We can find s  as follows.  Since our angle is 
2




 of one revolution, then s  is also 
2




 of the arc length 

for one revolution, which is the circumference of the circle. 

 r

 s
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circumference = arc length for central angle of 1 Rev = 2 r  

s  = arc length for central angle of 
2




 Rev =  2
2

r r
  


  

So,  s r  where   is in radians.  We have the following.  

Definition 1.1. The radian measure   of a central angle is the ratio of the length s  of the arc 

subtending that angle to the radius r  of the circle: 
s

r
  .  

For a central angle   of measure 1 radian,  1s r r  .  That is, an angle of 1 radian is the angle subtended 

by an arc with length equal to the radius of the circle. 

Figure 1.1. 19 

 

  has radian measure 1 

According to the relationship  s r , the radian measure of an angle   tells us how many ‘radius 

lengths’ we need to sweep out along the circle to subtend the angle  .  For example, an angle   of 

radian measure 4 is subtended by an arc of length 4 times the radius. 

Figure 1.1. 20 

 

  has radian measure 4 
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The reason no symbol is used to denote radian measure is that 
s

r
  , being the ratio of two lengths, is 

just a number.  As with degree measure, the distinction between the angle itself and its measure is often 

blurred in practice so that when we write 
2

  , we mean ‘  is an angle that measures 
2


 radians’. 

Supplementary and Complementary Angles 

Two angles, either a pair of right angles or one acute angle and one obtuse angle, are called 

supplementary angles if their measures add to 180°, or   radians.  Two acute angles are called 

complementary angles if their measures add to 90°, or 
2


 if the angles are measured in radians.  In the 

diagrams below, the angles   and   are supplementary angles while the pair   and   are 

complementary angles. 

Figure 1.1. 21 

 

Figure 1.1. 22 

 

The Greek letter phi,  , is pronounced ‘fee’, or ‘fie’ to avoid possible confusion.4 

Example 1.1.1. 

1. Find a supplementary angle for 111   . 

2. Find a complementary angle for 
5

  . 

Solution. 
1. To find a supplementary angle for 111   , we seek an angle   so that 180    .  Then 

 

180

180 111

69

  

 





 


  

2. To find a complementary angle for 
5

  , we seek an angle   so that 
2

   .  We get 

 
4 The symbol  , or  , represents the small Greek letter phi.  We will occasionally use the symbol   to represent 

the uppercase Greek letter phi. 
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Oriented Angles 

Up to this point, we have discussed only angles that measure between 0 Rev and 1 Rev, between 0° and 

360°, or between 0 radians and 2  radians, inclusive.  Ultimately, we want to extend their applicability 

to other real-world phenomena.  A first step in this direction is to introduce the concept of an oriented 

angle.  As its name suggests, for an oriented angle, the direction of the rotation is important.  We imagine 

the angle being swept out starting from an initial side and ending at a terminal side, as shown below.  

When the rotation is counter-clockwise from initial side to terminal side, we say that the angle measure is 

positive; when the rotation is clockwise, we say the angle measure is negative. 

Figure 1.1. 23 

 

A positive angle, 60° 

Figure 1.1. 24 

 

A negative angle, −60° 

We also extend our allowable rotations to include angles that encompass more than one revolution.  For 

example, to sketch an angle with measure 450° we start with an initial side, rotate counter-clockwise one 

complete revolution (to take care of the first 360°), then continue with an additional 90° counter-

clockwise rotation, as follows. 

Te
rm
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Initial Side
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inal Side

Initial Side
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Figure 1.1. 25 

 

450° 

Converting Between Revolutions, Degrees and Radians 

For converting between angle measures, we use the fact that one revolution is 360°, or 2  radians. 

 Converting Between Angle Measures 

 To convert degree measure to revolution measure, divide by 360.  To convert revolution 

measure to degree measure, multiply by 360. 

 To convert radian measure to revolution measure, divide by 2 .  To convert revolution 

measure to radian measure, multiply by 2 . 

 To convert degree measure to radian measure, multiply by 
180


.  

 To convert radian measure to degree measure, multiply by 
180


. 

Example 1.1.2. Convert the following measures. 

1. 30° to revolutions 

2. 
1

6
 revolution to radians 

3. 60° to radians 

4. 
5

4


  radians to degrees 

5. 1 radian to degrees 

Solution. 

1. To convert 30° to revolutions, we simply divide by the number of degrees in one revolution. 

 
30 1

30  Rev  Rev
360 12

    

2. To convert 
1

6
 Rev to radians, we multiply by the number of radians in one revolution. 
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  1 1
 Rev 2  radians  radians

6 6 3

   

3. To convert 60° to radians, we multiply by 
180


. 

 60 60  radians  radians
180 3

    
 

   

4. To convert 
5

4


  radians to degrees, we multiply by 

180


. 

 
5 5 180

 radians  degrees 225
4 4

 


        
  

   

The negative sign indicates clockwise rotation in both systems and is carried along accordingly. 

5.   180 180
1 radian 1  degrees  degrees

 
   
 

.  This is approximately equal to 57.3°. 

  

In Example 1.1.2, we showed that one radian is slightly less than 60°.  This may serve as a handy 

reference for graphing or visualizing angles with radian measures, such as 2 radians or −1 radian. 

Standard Position 

To connect angles with the algebra that has come before, we shall often overlay an angle diagram on the 

coordinate plane.  An angle is in standard position if its vertex is the origin and its initial side coincides 

with the positive side of the x-axis.  We classify angles in standard position according to where their 

terminal side lies.  For instance, an angle in standard position whose terminal side lies in Quadrant I is 

called a Quadrant I angle.  If the terminal side of an angle lies on one of the coordinate axes, it is called a 

quadrantal angle. 

Figure 1.1. 26 

 

Quadrant I Angle 

Figure 1.1. 27 

 

Quadrantal Angle 

The following angles, in standard position, show locations of terminal sides for angles measured in 

twelfths and eighths of a revolution, followed by corresponding measures in degrees and radians. 

x

y

 

x

y
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Figure 1.1. 28 

 

Angle Measures in Revolutions 

Figure 1.1. 29 

 

Angles in Degrees:  Multiply revolutions by 360°. 

While the reader is likely familiar with degree measure, radian measure is the focus of this textbook in 

preparation for Calculus.  To determine radian equivalents for angles measured in revolutions, we 

multiply the revolution measure by 2 , as shown below for increments of 1 8  or 1 12  revolution. 

Figure 1.1. 30 

 

Radian Measure: Increments of 1 8  Revolution 

Figure 1.1. 31 

 

Radian Measure: Increments of 1 12  Revolution 

Before moving on, we note that to sketch the above angles by hand, we could first divide the circle into 

four equal sectors, or quarter circles, then 

 divide each quarter circle into two equal sectors to get portions that are one-eighth of a circle. 

(Each portion measures 45° or 4  radians.) 
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 divide each quarter circle into three equal sectors for portions that are one-twelfth of a circle.  

(Each portion measures 30° or 6  radians.) 

Figure 1.1. 32 

 

1
 Rev 90

4 2


   

Figure 1.1. 33 

 

1
 Rev 45

8 4


   

Figure 1.1. 34 

 

1
 Rev 30

12 6


   

Two angles in standard position are called coterminal if they share the same terminal side.5  In the 

following figure, 240     and 120    are two coterminal Quadrant II angles6 drawn in standard 

position.  Note that 360    , or equivalently 360    .  We leave it as an exercise for the reader 

to verify that coterminal angles always differ by a multiple of 360°.  More precisely, if   and   are 

coterminal angles, then 360 k     where k  is an integer.7 

Figure 1.1. 35 

 

 
5 Note that by being in standard position they automatically share the same initial side, which is the positive x-axis. 
6 In practice, the distinction between the angle itself and its measure is blurred so that the statement ‘  is an angle 

measuring 42 ’ is often abbreviated as ‘ 42   ’. 
7 Recall that this means 0, 1, 2,k      

x x x
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Example 1.1.3. Graph each of the (oriented) angles in standard position and classify them according 

to where their terminal side lies.  Find three coterminal angles, at least one of which is positive and one of 

which is negative. 

 1. 60    2. 225     3. 
9

4

   4. 
5

2

    

Solution. 

1. To graph 60   , we draw an angle with its initial side on the positive x-axis and rotate counter-

clockwise 
60 1

360 6




 , or 
2

12
, of a revolution.  (To locate the terminal side by hand, we divide the 

first quadrant into three equal 30° pieces.  Our 60° angle includes the two pieces closest to the 

positive x-axis.)  We see that   is a Quadrant I angle. 

Figure 1.1. 36 

 

To find angles that are coterminal, we look for angles   of the form 360 k     for some 

integer k . 

 When 1k  , we get 60 360 420      . 

 Substituting 1k    gives 60 360 300       . 

 If we let 2k  , we get 60 720 780      . 

2. Since 225     is negative, we start at the positive x-axis and rotate clockwise 
225 5

360 8




  of a 

revolution.  (To locate the terminal side by hand, since 225 180 45      , we divide the 

second quadrant into two equal 45° pieces.  Our −225° angle terminates between these two 

pieces.)  We see that   is a Quadrant II angle. 

x

y

  60  
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Figure 1.1. 37 

 

To find coterminal angles, we proceed as before and compute 225 360 k       for integer 

values of k .  Letting 1k  , 1k   , and 2k  , we find 135°, −585°, and 495° are all coterminal 

with −225°. 

3. Since 
9

4

   is positive, we rotate counter-clockwise from the positive x-axis.  One full 

revolution accounts for 
8

2
4

   of the radian measure with 
4


 or 

1

8
 of a revolution remaining.  

(To draw the terminal side by hand, divide the first quadrant into two equal 
4


 pieces.)  We have 

  as a Quadrant I angle. 

Figure 1.1. 38 

 

All angles coterminal with   are of the form 2 k    , where k  is an integer.  To make 

arithmetic a bit easier, we note that 
8

2
4

  , so that 
9 8

4 4
k

    . 

 For 1k   , we get 
9 8

4 4 4

      . 

 Substituting 2k    gives 
9 16 7

4 4 4

       . 

x

y

  225   

x

y

  9
4
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 When we let 1k  , we get 
9 8 17

4 4 4

      .  

4. To graph 
5

2

   , we begin our rotation clockwise from the positive x-axis.  As 
4

2
2

  , after 

one full revolution clockwise we have 
2


 or 

1

4
 of a revolution remaining.  Since the terminal side 

of   lies on the negative y-axis,   is a quadrantal angle. 

Figure 1.1. 39 

 

To find coterminal angles, we compute 
5 4

2 2
k

      for a few integers k  and obtain, for 

example, 
2


 , 

3

2


, and 

7

2


. 

  

Note that since there are infinitely many integers, any given angle has infinitely many coterminal angles, 

and the reader is encouraged to plot the few sets of coterminal angles found in Example 1.1.3 to see this.   

Sketching Other Angles 

At this point, we have sketched angles in degrees and radians that correspond to revolution measures in 

increments of eighths and twelfths.  In the following example, we will develop a technique for graphing 

any angle. 

Example 1.1.4. Let 111    and 
5

  . 

1. Sketch the angle  . 

2. Sketch the angle  . 

Solution. 

1. We refer to degree measures corresponding to one-eighth revolutions to help us here.  To sketch 

111   , we first note that 90 180   .  If we divide this range in half, we observe that 

x

y

  5
2
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90 135   .  After one more division, we get 90 112.5   .  We note that, in fact, 111° is 

only slightly less than 112.5°, and so 112.5° is a good approximation for graphing.  While 112.5° 

is not shown in the figure on the left, it is midway between 90° and 135° and is included in our 

sketch of   to the right. 

Figure 1.1. 40 

 

Figure 1.1. 41 

 

2. For 
5

  , we find 0
2

  .  After dividing the range in half, we get 0
4

  , followed by 

8 4

   , and lastly 
3

16 4

   .  The locations of 
8


 and 

3

16


 are included in the actual 

sketch of the angle 
5

   below, to the right. 

Figure 1.1. 42 

 

Figure 1.1. 43 

 

  

y
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 3
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4

   3
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 7

4



 8
2
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 0

 

 

8
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1.1 Exercises 

In Exercises 1 – 8, convert the angle from degree measure into radian measure, giving the exact value in 

terms of  .  These problems should be worked without the aid of a calculator. 

 1. 0° 2. 240° 3. 135° 4. −270° 

 5. −315° 6. 150° 7. 45° 8. −225° 

In Exercises 9 – 16, convert the angle from radian measure into degree measure. 

 9.   10. 
2

3


  11. 

7

6


 12. 

11

6


 

 13. 
3


 14. 

5

3


 15. 

6


  16. 

2


 

In Exercises 17 – 39, graph the oriented angle in standard position.  Classify each angle according to 

where its terminal side lies and then give two coterminal angles, one of which is positive and the other 

negative. 

 17. 330° 18. −135° 19. 120° 20. 405° 

 21. −270° 22. 300° 23. −150° 24. 135° 

 25. 
5

6


 26. 

11

3


  27. 

5

4


 28. 

3

4


 

 29. 
3


  30. 

7

2


 31. 

4


 32. 

2


  

 33. 
7

6


 34. 

5

3


  35. 3  36. 2  

 37. 
4


  38. 

15

4


 39. 

13

6


   

In Exercises 40 – 47, sketch the angle in standard position.  You may refer to Example 1.1.4. 

 40. 100° 41. 40° 42. 150° 43. 80° 

 44. 
7


 45. 

11


 46. 

3

11


   47. 

7

5
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In Exercises 48 – 51, find a supplementary angle for the given angle. 

 48. 102 ° 49. 39° 50. 
5

6


 51. 

2


 

In Exercises 52 – 55, find a complementary angle for the given angle. 

 52. 11° 53. 39° 54. 
6


 55. 

3

7


 

56. Sketch the oriented angles 
2


 and 100° on the same graph, labeling each. 

57. Sketch the oriented angles 
4


  and −40° on the same graph, labeling each. 

58. Sketch the oriented angles 
2

3


  and 240° on the same graph, labeling each. 
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1.2 Right Triangle Trigonometry  

Learning Objectives 

 Define the trigonometric ratios. 

 Identify the trigonometric ratio values for 30, 45, and 60 degree angles. 

 Solve right triangles and related applications. 

As we shall see in the sections to come, many applications in Trigonometry involve finding the measures 

of the interior angles and the lengths of the sides of right triangles.  Recall that a right triangle is a 

triangle containing one right angle, which means the remaining two angles are acute angles.  In this 

section, we define trigonometric ratios.  Noting that two right triangles are similar if they have one 

congruent acute angle, we use properties of similar triangles to establish trigonometric ratio values for 

three special angles: 30°, 45°, and 60°.  We then use trigonometric ratios to find lengths of sides of right 

triangles. 

Similar Triangles 

We begin with a definition from Geometry.  Recall that any two triangles are similar if they have the 

same shape or, more specifically, if their corresponding angles are congruent.  Additionally, two triangles 

are similar if and only if their corresponding sides are proportional.  In the following triangles, A R   , 

B S   and C T  .  Thus, triangle ABC  is similar to triangle RST  and 
AB BC CA

RS ST TR
  . 

Figure 1.2. 1 

 

Figure 1.2. 2 

 

Since 
AB BC

RS ST
 , after multiplying both sides by 

RS

BC
, we find 

AB RS

BC ST
 .  Similarly, 

AB RS

CA TR
  and 

BC ST

CA TR
 .  So, in any two similar triangles, the ratios of corresponding side lengths are equivalent.  This 

correspondence between side lengths in triangles sharing common angles leads us to trigonometric ratios.     

B

A

C

S

R

T
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Trigonometric Ratios 

The trigonometric ratios introduced in this section will lead to Section 1.3 where we find trigonometric 

function values for angles.  To get started with ratios, we consider a right triangle and name one of its 

acute angles  .  The longest side of this right triangle is the side opposite the right angle and is called the 

hypotenuse, shown to have length c  in the following illustration.  Of the two shorter sides, the side 

closer to the angle   is referred to as the side adjacent to   while the side to which   opens is the 

opposite side.  For the angle   identified below, we have labeled the adjacent side as having length a , 

and the opposite side with length b .  Note that the letters assigned to the side lengths are arbitrary.   

Figure 1.2. 3 

 

The six trigonometric ratios are defined below. 

Definition 1.2. Suppose   is an acute angle in a right triangle.  If the length of the hypotenuse of the 

triangle is c , the side adjacent to   is a , and the side opposite   is b , then 

 The sine of  , denoted  sin  , is   opposite
sin

hypotenuse

b

c
   . 

 The cosine of   , denoted  cos  , is   adjacent
cos

hypotenuse

a

c
   . 

 The tangent of  , denoted  tan  , is   opposite
tan

adjacent

b

a
   . 

 The cosecant of  , denoted  csc  , is   hypotenuse
csc

opposite

c

b
   . 

 The secant of  , denoted  sec  , is   hypotenuse
sec

adjacent

c

a
   .  

 The cotangent of  , denoted  cot  , is   adjacent
cot

opposite

a

b
   . 

Note that it is common practice to write these ratios without parentheses, such as sin  instead of  sin  . 

a

b
c

Hypotenuse

Opposite

Adjacent
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The following are important properties of the trigonometric ratios. 

1. For all right triangles with the same acute angle  , because they are similar, the values of the 

trigonometric ratios of   will be equal.  This property of equivalent proportions of corresponding 

sides within similar triangles will be demonstrated in Example 1.2.2. 

2. Cosecant, secant, and cotangent ratios are reciprocals of the ratios for sine, cosine, and tangent, 

respectively.8  Thus, if we know the sine, cosine, and tangent ratios for an angle, we can easily 

determine the remaining trigonometric ratios.  In particular, 

 

   

   

   

1
csc

sin

1
sec

cos

1
cot

tan
















  

Example 1.2.1. Use the following triangle to evaluate  sin  ,  cos  ,  tan  ,  csc  ,  sec  , 

and  cot  . 

Figure 1.2. 4 

 

Solution. 

From the definitions of trigonometric ratios, 

 

 

 

 

opposite 4
sin

hypotenuse 5

adjacent 3
cos

hypotenuse 5

opposite 4
tan

adjacent 3







 

 

 

  

The reciprocals of these ratios result in the remaining trigonometric ratio values: 

 
8 Don’t confuse reciprocal with inverse.  We will talk about inverses later on. 

4

3

5
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1 5
csc

sin 4

1 5
sec

cos 3

1 3
cot

tan 4










 

 

 

  

  

Example 1.2.2. Verify that the following triangles are similar.  Then evaluate the trigonometric ratio 

values for the angle in the second triangle that corresponds to  .  Refer to the trigonometric ratio values 

we found for   in Example 1.2.1.  What can you deduce about trigonometric ratios?  

Figure 1.2. 5 

 

Figure 1.2. 6 

 

Solution. 

The side lengths of the second triangle are proportional to the corresponding side lengths of the first 

triangle by a scale factor of 3: 

 
9 12 15

3
3 4 5
    

Thus, the triangles are similar, with the angle   being equal in measure to  .  To evaluate the 

trigonometric ratio values for  , we save a bit of writing by using the abbreviations ‘opp’, ‘adj’, and 

‘hyp’ in place of ‘opposite’, ‘adjacent’, and ‘hypotenuse’, respectively.  The trigonometric ratio values for 

this similar triangle will be 

 

 

 

 

opp 12 3 4 4
sin

hyp 15 3 5 5

adj 9 3 3 3
cos

hyp 15 3 5 5

opp 12 3 4 4
tan

adj 9 3 3 3








   




   



   


  

Using reciprocal properties, the remaining three values are 

4

3

5

12

9

15
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15 3 5 5
csc

12 3 4 4
15 3 5 5

sec
9 3 3 3
9 3 3 3

cot
12 3 4 4








  




  



  


  

Referring to Example 1.2.1, we note that the trigonometric ratio values are identical for these two similar 

triangles.  We conclude that trigonometric ratios are independent of the size of the triangle. 

  

Pythagorean Theorem 

The Pythagorean Theorem will be useful in our next task: determining trigonometric ratio values for 30°, 

45°, and 60° angles. 

Theorem 1.1. The Pythagorean Theorem: In a right triangle, the 

square of the length of the hypotenuse is equal to the sum of the 

squares of the lengths of its legs. 

In the triangle to the right, 2 2 2c a b  . 

Figure 1.2. 7 

 

Solving the above equation for c , we get 2 2c a b   .  However, since c  is a length and must be 

positive, 2 2c a b  .  We can also use the Pythagorean Theorem to solve for the length of a leg since, 

for example, 2 2 2a c b   gives us 2 2a c b  . 

Ratios of 30°–60°–90° Triangles   

We begin by finding the values of trigonometric ratios for 30°.  We sketch a 30°–60°–90° triangle with 

hypotenuse of length c  and envision this triangle as being half of a 60°–60°–60° equilateral triangle. 

Figure 1.2. 8 

 

 Figure 1.2. 9 

 

 a

 b
 c

c

c

c

 30

 60

x

a

 30

 60  2c x
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Noting that the altitude of the equilateral triangle bisects its base, and assigning the variable x  to the 

length of the shortest side of the 30°–60°–90° triangle (the side opposite the 30° angle), we find the 

hypotenuse has length 2c x .  To find the length of the side adjacent to the 30° angle, a , we apply the 

Pythagorean Theorem. 

 2 2 2

2 2 2

2 2

2

4

3

3

x a x

x a x

x a

a x

 

 





 

Figure 1.2. 10 

 

Using the resulting side lengths, along with the definitions of the trigonometric ratios, we have 

 

 

 

 

1
sin 30

2 2

3 3
cos 30

2 2
1

tan 30
3 3

x

x

x

x
x

x

 

 

 







  

Note that we may choose to rationalize the denominator of  tan 30  to get 
1 1 3 3

33 3 3
   .  Taking 

the reciprocals of these values results in the remaining three trigonometric ratio values: 

 

   
   
   

1
csc 30 2

sin 30

1 2
sec 30

cos 30 3

1
cot 30 3

tan 30

 

 

 










  

We note that these trigonometric ratio values apply to any 30° angle.  The reader is encouraged to 

determine the trigonometric ratio values for 60° angles. 

Ratios of 45°–45°–90° Triangles 

To find the values of the trigonometric ratios for 45°, we sketch a 45°–45°–90° triangle with hypotenuse 

c , and note that this is a right isosceles triangle so the two smaller sides must be equal in length. 

x

 30

 60 2x

  3a x
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Figure 1.2. 11 

 

Assigning the variable x  to the length of a smaller side, we use the Pythagorean Theorem to solve for c . 

2 2 2

2 22

2

c x x

c x

c x

 





 

Figure 1.2. 12 

 

The resulting trigonometric function values for 45° are 

  1
sin 45

2 2

x

x
      

1
csc 45 2

sin 45
 

  

  1
cos 45

2 2

x

x
      

1
sec 45 2

cos 45
 

  

 tan 45 1
x

x
      

1
cot 45 1

tan 45
 

  

Note that we may choose to rationalize the denominator of  sin 45  to get 
1 1 2 2

22 2 2
   . 

Before moving on, we take another look at the triangles from above and their corresponding side ratios.  

Ratios for 30°–60°–90° and 45°–45°–90° Triangles 

Figure 1.2. 13 

 

Figure 1.2. 14 

 
 

c

a

 45

 45

 b a

x

x

 45

 45

  2c x

 30

 60
 2x

  3x

 x
 45

 45

 x

 x

  2x
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In the following table, we summarize the trigonometric ratio values for 30°, 45°, and 60° angles, which 

we will refer to as standard angles.  Note that we may choose to rationalize denominators, or not.  It is 

often easier to work with non-rationalized denominators, but you should be familiar with seeing these 

trigonometric ratios in rationalized format since that is frequently how they are displayed.  The following 

table includes both rationalized and non-rationalized values. 

Trigonometric Ratios for Standard Angles: 30°, 45°, and 60° 

   sin    cos    tan    csc    sec    cot   

30° 
1

2
 3

2
 

1 3

33
  2 

2 2 3

33
  3  

45° 
1 2

22
  

1 2

22
  1 2  2  1 

60° 
3

2
 

1

2
 3  

2 2 3

33
  2 

1 3

33
  

Solving Standard Right Triangles 

We will use the values in the table, as well as the ratios represented in the 30°–60°–90° and 45°–45°–90° 

triangles to determine missing angles and sides in the next several examples.  This is sometimes referred 

to as solving right triangles. 

Example 1.2.3. A right triangle has one angle of 60° and a hypotenuse of length 20.  Find the 

unknown side lengths and missing angle measure. 

Solution. We begin by finding the measure of the missing angle.  The sum of the angles of a triangle is 

180°, so the missing angle measure is 180 60 90 30      .  We assign variables for the missing side 

lengths: a  for the side adjacent to the 60° angle, and b  for the opposite side.  Then, noting that this is a 

30°–60°–90° triangle, we use the ratios established previously to solve for missing sides.  
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Figure 1.2. 15 

 

Figure 1.2. 16 

 

From 20 2x , we find 10x  , and so 10a  .  Then  3 3 10b x   , or 10 3 .  The triangle with all 

of its angles and side lengths is recorded below. 

Figure 1.2. 17 

 

  

Example 1.2.4. Find the measure of the missing angle and the lengths of the missing sides in the 

following right triangle. 

Figure 1.2. 18 

 

Solution. We begin by finding the measure of the missing angle: 180 90 30 60      .  We continue 

by labeling the missing side lengths: c  for the hypotenuse and b  for the side opposite the 30° angle.   

b

a

20

 60  60

 20 2x

 a x

   3b x

 

30

10

20

 60

 30

 10 3

7

 30
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Figure 1.2. 19 

 

To solve for the side lengths, we use trigonometric ratio values.  First of all, for c  we have  

  7
cos 30

c
 , from which 

 

 
7

cos 30

7

3 2

14

3

c 







  

For length b ,  tan 30
7

b
  so that 

 

 7 tan 30

1
7

3
7

3

b 

 





  

Below we have the triangle with all angles and sides labeled. 

Figure 1.2. 20 

 

  

Note that we could have solved Example 1.2.4 using the method from Example 1.2.3, just as Example 

1.2.3 could be solved with trigonometric ratio values. 

7

c
b

 30

7

 14

3   7

3

 60

 30
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Applications 

Right triangle trigonometry has many practical applications.  For example, the ability to compute the 

lengths of sides of a triangle makes it possible to find the height of a tall object without climbing to the 

top or having to extend a tape measure.  The following example uses trigonometric ratios as well as the 

concept of an ‘angle of inclination’.  The angle of inclination, also known as the angle of elevation, of 

an object refers to the angle whose initial side is some kind of horizontal base line (say, the ground), and 

whose terminal side is the line-of-sight to an object above the base-line.  This is represented schematically 

below. 

Figure 1.2. 21 

 

  is angle of inclination (elevation). 

Figure 1.2. 22 

 

  is angle of depression. 

An angle of depression, shown to the right, is the angle from the horizontal base line to a terminal side 

below the base line.  This can be thought of from the perspective on an observer who begins by looking 

horizontally out.  If the observer proceeds by looking upward, the angle is one of elevation.  If the 

observer looks downward, the angle is one of depression.  

Example 1.2.5. The angle of inclination from a point on the ground 30 feet away from the base of a 

water tower to the top of the water tower is 60°.  Find the height of the water tower to the nearest foot. 

Solution. We can represent the problem situation using a right triangle as shown. 

Figure 1.2. 23 

 

base line

object

 

base line

object

 

30 feet

h

 60
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If we let h  denote the height of the tower, then we have  tan 60
30

h
 .  From this we get 

 

 30 tan 60

30 3

51.96

h 






  

Hence, the water tower is approximately 52 feet tall. 

  

We can extend the idea of the last problem to determine the height an object, even if we cannot quite 

reach its base, as you see in the next example. 

Example 1.2.6. In order to determine the height of a California redwood tree, two sightings from the 

ground, one 200 feet directly behind the other, are made.  If the angles of inclination are 45° and 30°, 

respectively, how tall is the tree to the nearest foot. 

Solution. Sketching the problem situation below, we find ourselves with two unknowns: the height h  

of the tree and the distance x  from the base of the tree to the first observation point. 

Figure 1.2. 24 

 

Using trigonometric ratios, we get a pair of equations:  tan 45
h

x
  and  tan 30

200

h

x



 .  Since 

 tan 45 1 , the first equation gives 1
h

x
 , or x h .  Substituting this into the second equation gives 

 
 tan 30

200
1

2003

h

h
h

h









  

We proceed to solve for h . 

h

200 ft. x ft.

 30  45
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3 200

3 200

3 1 200

200
273.205

3 1

h h

h h

h

h

 

 

 

 


  

Hence, the tree is approximately 273 feet tall. 

  

In the real world, it will be rare to find angles of exactly 30°, 45° or 60°.  For other angles, approximate 

trigonometric values may be found with a calculator.  There are three general types of calculators: 

arithmetic, scientific and graphing.  However, some scientific calculators have a Direct Algebraic Logic 

(D.A.L.) input method that allows them to operate like a graphing calculator.  For calculating 

trigonometric values, you will need a scientific or a graphing calculator.  You will need to check that the 

calculator is set to the correct angle measure unit, i.e. degrees or radians.  Refer to your calculator’s 

instruction guide for help with this.  For most calculators the following steps apply in finding sine, cosine 

or tangent trigonometric ratios: 

 In a scientific calculator, punch in the angle measure followed by the desired ratio: ‘sin’, ‘cos’ or 

‘tan’, respectively. 

 In a graphing or D.A.L. calculator, punch in the desired trigonometric ratio, ‘sin’, ‘cos’ or ‘tan’, 

followed by the angle and then ‘enter’ or ‘=’. 

Of course, if you are interested in cosecant, secant or cotangent ratios, you must find the value of the sine, 

cosine or tangent, respectively, followed by the 1x  button in a scientific calculator, or the 1x  button, 

then ‘enter’ or ‘=’, in a graphing or D.A.L. calculator. 

Example 1.2.7. To what length must an adjustable ladder be set so that it reaches a windowsill 50 

feet above the ground with the ladder resting against the building at an angle of 75° with the ground? 

Solution. We know that the angle of inclination, or elevation, is 75° and that the opposite side is 50 

feet in length.  The length of the hypotenuse, h , will give us the necessary length for the ladder to reach a 

height of 50 feet.  Using the ratio for sine of 75°, we have 
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50
sin 75

50

sin 75

50

0.9659258
51.7638

h

h

h

h











  

Figure 1.2. 25 

 

We have found that the height of the ladder should be exactly  
50

sin 75
 feet.  Noting that trigonometric 

ratio values for 75  are not included in the table for standard angles, a calculator allows us to find an 

approximate value for  sin 75 .  We find the approximate height is 51.8 feet. 

  

h
50

 75
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1.2 Exercises 

 1. For each of the given right triangles, label the adjacent side, opposite side and hypotenuse for the 

indicated angle. 

Figure Ex1.2. 1 

 

Figure Ex1.2. 2 

 

 2. The tangent of an angle compares which sides of a right triangle? 

 3. What is the relationship between the two acute angles in a right triangle? 

 In Exercises 4 – 7, use the given right triangle to evaluate  sin  ,  cos  ,  tan  ,  csc  ,  sec   

and  cot  .  Give exact values. 

 4. 

Figure Ex1.2. 3 

 

 5. 

Figure Ex1.2. 4 

 

 6. 

Figure Ex1.2. 5 

 

 7. 

Figure Ex1.2. 6 

 

  

 

 

10

4
 

3

7

 

8

10

 

8
5
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In Exercises 8 – 15, find the measure of the missing angle and the lengths of the missing sides.  Give 

exact values. 

 8. Find  , b  and c . 

Figure Ex1.2. 7 

 

 9. Find  , a  and c . 

Figure Ex1.2. 8 

 

10. Find  , a  and b . 

Figure Ex1.2. 9 

 

11. Find  , a  and c . 

Figure Ex1.2. 10 

 

12. Find  , a  and c . 

Figure Ex1.2. 11 

 

13. Find  , b  and c . 

Figure Ex1.2. 12 

 

b
c

1

 30

 

b

a
8

 30

 

c

a

6

 45

 

a
c

9

 

 60

b

c
12

 30
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14. Find  , a  and c . 

Figure Ex1.2. 13 

 

15. Find  , b  and c . 

Figure Ex1.2. 14 

 

In Exercises 16 – 27, assume that   is an acute angle in a right triangle.  Find the exact value for the 

requested side length. 

 16. If 30    and the side adjacent to   has length 4, how long is the hypotenuse? 

 17. If 45    and the hypotenuse has length 5280, how long is the side adjacent to  ? 

 18. If 60    and the side opposite   has length 117, how long is the hypotenuse? 

 19. If 30    and the hypotenuse has length 10, how long is the side opposite  ? 

 20. If 45    and the hypotenuse has length 10, how long is the side adjacent to  ? 

 21. If 60    and the side opposite   has length 306, how long is the side adjacent to  ? 

 22. If 30    and the side opposite   has length 4, how long is the side adjacent to  ? 

 23. If 45    and the hypotenuse has length 8, how long is the side opposite  ? 

 24. If 60    and the side adjacent to   has length 2, how long is the side opposite  ? 

 25. If 30    and the side opposite   has length 14, how long is the hypotenuse? 

 26. If 45    and the hypotenuse has length 4, how long is the side adjacent to  ? 

 27. If 60    and the side adjacent to   has length 31, how long is the side opposite  ? 

3

c

b

2.5

 45
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In Exercises 28 – 31, find the exact value for x . 

28. 

Figure Ex1.2. 15 

 

29. 

 

Figure Ex1.2. 16 

 

30. 

Figure Ex1.2. 17 

 

31. 

Figure Ex1.2. 18 

 

32. A tree standing vertically on level ground casts a 120 foot long shadow.  The angle of elevation from 

the end of the shadow to the top of the tree is 21.4°.  Find the height of the tree to the nearest foot.9 

33. The broadcast tower for radio station WSAZ (Home of “Algebra in the Morning with Carl and Jeff”) 

has two enormous flashing red lights on it, one at the very top and one a few feet below the top.  

From a point 5000 feet away from the base of the tower, on level ground, the angle of elevation to the 

top light is 7.970° and to the second light is 7.125°.  Find the distance between the lights to the 

nearest foot. 

34. From a fire tower 200 feet above level ground in the Sasquatch National Forest, a ranger spots a fire 

off in the distance.  The angle of depression to the fire is 2.5°.  How far away from the base of the 

tower is the fire?  Round to the nearest foot. 

35. The ranger from the previous problem sees a Sasquatch running directly from the fire toward the fire 

tower.  The ranger takes two sightings.  At the first sighting, the angle of depression from the tower to 

 
9 Research the term umbra versa and see what it has to do with the shadow in this problem. 

82

x  x

 45 60

85

x  x

 45 30

115

x x

 45  30

119

x x

 45 60
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the Sasquatch is 6°.  The second sighting, taken just 10 seconds later, gives the angle of depression as 

6.5°.  With the fire tower being 200 feet above level ground, determine how far the Sasquatch 

travelled in those 10 seconds.  Round your answer to the nearest foot.  How fast is this in miles per 

hour?  Round your answer to the nearest mile per hour.  If the Sasquatch keeps up this pace how long 

will it take for the Sasquatch to reach the fire tower from his location at the second sighting?  Round 

your answer to the nearest minute. 

36. When Rachel stands 30 feet away from a tree in her yard, the angle of elevation to the top of the tree 

is 50° and the angle of depression to the base of the tree is 10°.  What is the height of the tree?  Round 

your answer to the nearest foot. 

37. From the observation deck of the lighthouse at Sasquatch Point, 50 feet above the surface of Lake 

Ippizuti, a lifeguard spots a boat out on the lake sailing directly toward the lighthouse.  The first 

sighting had an angle of depression of 8.2° and the second sighting had an angle of depression of 

25.9°.  How far had the boat traveled between sightings?  Round your answer to the nearest foot. 

38. A guy wire 1000 feet long is attached to the top of a tower.  When pulled taut, it makes a 43° angle 

with the ground.  How tall is the tower?  How far away from the base of the tower does the wire hit 

the ground?  Round your answers to the nearest foot. 

39. A 33 foot ladder leans against the Student Center so that the angle between the ground and the ladder 

is 80°.  How high, to the nearest tenth of a foot, does the ladder reach up the side of the Student 

Center? 

40. The angle of elevation to the top of a building in Seattle is found to be 2 degrees from the ground at a 

distance of 2 miles from the base of the building.  Using this information, find the height of the 

building to the nearest hundredth of a foot. 

41. Assuming that a 370 foot tall giant redwood grows vertically, if Dale walks away from the tree to a 

point where the angle of elevation to the top of the tree is 60°, how far from the base of the tree is he?  

Round to the nearest hundredth of a foot. 

42. Let   and   be the two acute angles of a right triangle.  (Thus   and   are complementary angles.)  

Show that    sin cos   and    sin cos  .  The fact that co-functions of complementary angles 

are equal in this case is not an accident and we will look at a more general result later. 

43. Let   and   be the two acute angles of a right triangle.  (Thus   and   are complementary angles.)  

Show that    sec csc   and    tan cot  . 
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1.3 The Unit Circle 

Learning Objectives 

 Sketch oriented arcs on the Unit Circle. 

 Determine sine and cosine values of an angle from a point on the Unit 

Circle. 

 Use reference angles in determining the sine and cosine of a given angle. 

 Know the sine and cosine values for 0°, 30°, 45°, 60°, and 90°, or for the 

equivalent radian measure. 

 Know and apply the Pythagorean identity. 

 Know the signs of the sine and cosine in each quadrant. 

In the previous section, we defined the trigonometric ratios of acute angles within right triangles and 

identified the trigonometric ratio values for the standard angles 30°, 45° and 60°.  In this section, we 

extend the definition of trigonometric ratios for sine and cosine to include all angles.  We make good use 

of the Unit Circle for this task, and thus begin with a definition of the Unit Circle. 

Oriented Arcs on the Unit Circle 

The Unit Circle is a circle with radius 1 that is centered at the origin when drawn in the Cartesian plane.  

The equation that yields the Unit Circle is 2 2 1x y  .  The following sketch of the Unit Circle includes a 

central angle  , drawn in standard position and subtended by an arc of length s  units.   

Figure 1.3. 1 

 

We found in Section 1.1 that  s r  .  In this special case where 1r  , that relationship leads us to 

conclude that s  .  (Again, we are blurring the distinction between an angle and its measure.)  Thus, s  

x

y

1

1

s
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is the same length as the measure of the angle  , and we remind ourselves that   is measured in radians.  

In order to identify real numbers with oriented angles, we make good use of this fact by essentially 

‘wrapping’ the real number line around the Unit Circle and associating to each real number t  an oriented 

arc on the Unit Circle with initial point  1,0 .  To demonstrate this, consider the Unit Circle and a real 

number line drawn vertically at 1x   with the positive direction being upward. 

Consider any real number t  where 0t   and ‘wrap’ the interval  0, t  on the vertical real number line 

around the Unit Circle in a counter-clockwise fashion.  The resulting arc has length of t  units and is 

oriented in the counter-clockwise direction.  The corresponding angle is also oriented in the counter-

clockwise direction and has radian measure equal to t . 

Figure 1.3. 2 

 

Interval  0, t , 0t   

Figure 1.3. 3 

 

After wrapping interval  0, t  around Unit Circle  

If 0t  , we wrap the interval  ,0t  clockwise around the Unit Circle.  Since we have defined clockwise 

rotation as having negative radian measure, the oriented angle determined by this arc has a negative 

radian measure equal to t . 

x

y

(1,0)

t

  1x 

x

y

(1,0)

t

t

  1x 
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Figure 1.3. 4 

 

Interval  ,0t , 0t   

Figure 1.3. 5 

 

After wrapping  ,0t  around Unit Circle 

If 0t  , we are at the point  1,0  on the x-axis that corresponds to an angle with radian measure 0. 

Figure 1.3. 6 

 

0t   

Thus, we identify each real number t  with a corresponding angle having radian measure of t . 

Example 1.3.1. Sketch the oriented arc on the Unit Circle corresponding to each of the following real 

numbers. 

 1. 
3

4
t


  2. 2t    3. 2t    4. 21t   

Solution. 

1. The arc associated with 
3

4
t


  is the arc on the Unit Circle that subtends the angle 

3

4


, 

measured in radians.  Since 
3

4


 is 

3

8
 of a revolution, we have an arc that begins at the point 

 1,0  and proceeds counter-clockwise up to midway through Quadrant II. 

x

y

(1,0)

t

  1x 

x

y

(1,0)

t

t

  1x 

x

y

(1,0)

t

  1x 



T1-42 Foundations of Trigonometry 
 

Figure 1.3. 7 

 

2. Since one revolution is 2  radians, and 2t    is negative, we graph the arc that begins at 

 1,0  and proceed clockwise for one full revolution. 

Figure 1.3. 8 

 

3. Like 2t   , 2t    is negative, so we begin our arc at  1,0  and proceed clockwise around the 

Unit Circle.  With 3.14   and 1.57
2


 , we find rotating 2 radians clockwise from the point 

 1,0  lands us in Quadrant III between 
2


  and  .  To more accurately place the endpoint, we 

proceed as we did in Example 1.1.4, successively halving the angle measure until we find 

5
1.96

8


   , which tells us our arc extends, clockwise, approximately a quarter of the way into 

Quadrant III. 
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Figure 1.3. 9 

 

4. Since 21 is positive, the arc corresponding to 21t   begins at  1,0  and proceeds counter-

clockwise.  As 21 is much greater than 2 , we wrap around the Unit Circle several times before 

finally reaching our endpoint.  We approximate 
21

2
 as 3.34 which tells us we complete 3 

revolutions counter-clockwise with 0.34, or just slightly more than 
1

3
 of a revolution, remaining.  

In other words, the terminal side of the angle that measures 21 radians in standard position is in 

Quadrant II, slightly past 
3


 radians.  In the following diagram, the arc is wrapping around the 

Unit Circle 3 times before completing its partial rotation into the second quadrant.  This is 

difficult to display graphically but observing the corresponding angle rotations may help.  

Figure 1.3. 10 

 

  

We use this association of any real number with the radian measure of an angle subtended by an arc on 

the Unit Circle, where the length of the arc is equivalent to the angle measure, to define the sine and 

cosine values for all angles. 

x

y
1

t
  3

4


   5

8




  2t  

  1,0

x

y

t

(1,0)

1

  117t 

 5

4



  1,0

  21t 

 

3





T1-44 Foundations of Trigonometry 
 

The Sine and Cosine as Trigonometric Functions 

We have already defined the sine and cosine as ratios for acute angles within right triangles.  We now 

define the sine and cosine for any angle measure.  Consider an angle   in standard position, and let 

 ,P x y  denote the point where the terminal side of   intersects the Unit Circle.  We assign the cosine of 

  as the x-coordinate of P  and the sine of   as the y-coordinate of P :  cosx   and  siny  . 

Figure 1.3. 11 

 

To check that this agrees with our earlier definition of sine and cosine, consider an acute angle  .  A 

vertical line segment from the point P  to the x-axis results in a right triangle, as shown below.  The right 

triangle has a hypotenuse of 1, since the radius of the Unit Circle is 1.  From the x- and y-coordinates of 

P , we find the side of the triangle adjacent to   has length x  and the side opposite   has length y . 

Figure 1.3. 12 

 

Figure 1.3. 13 

 

Using the right triangle definition of sine and cosine from Section 1.2, we find 
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This confirms that our new definition for  sin   as the y-coordinate and  cos   as the x-coordinate of a 

point on the Unit Circle agrees with the right triangle definition.  The reader is encouraged to verify that 

this new definition, that matches an angle with its sine and cosine, satisfies the definition of a function: 

for each angle  , there is only one associated value of  sin   and only one associated value of  cos  .  

Not only does this new definition allow us to find the sine and cosine of any angle, it also means  sin   

and  cos   are functions.  Although we usually denote a function with just one letter, like ,f  here we 

use the three letters ‘sin’ and ‘cos’ as the names of these functions.  We may also write    sinf    or 

   cosg   . 

The domain of both  sin   and  cos   is  ,   since   can be assigned the value of any real 

number as its radian measure.  The terminal side of the angle   intersects the Unit Circle in a unique 

point,       , cos ,sinx y   .  Noting that both x and y values of points on the Unit Circle take on all 

values between −1 and +1, the range of  sin   and  cos   is  1,1 . 

Recall that any angle that is not labeled as being in degrees is, by default, assumed to be in radians.  In the 

following example, the angles in part 2 and part 4 are radian measures:     radians and 
6

   

radians, respectively. 

Example 1.3.2. Find the sine and cosine of the following angles. 

 1. 270    2.     3. 45    4. 
6

   5. 60     

Solution. 

1. To find  sin 270  and  cos 270 , we plot the angle 270    in standard position and find the 

point on the terminal side of   that lies on the Unit Circle.  Since 270° represents 
3

4
 of a 

counter-clockwise rotation, the terminal side of   lies along the negative y-axis.  Hence, the point 

we seek is  0, 1  so that  sin 270 1   and  cos 270 0 . 
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Figure 1.3. 14 

 

2. The angle     represents one-half of a clockwise rotation so its terminal side lies on the 

negative x-axis.  The point on the Unit Circle that lies on the negative x-axis is  1,0 , from 

which  sin 0   and  cos 1   . 

Figure 1.3. 15 

 

3. When we sketch 45    in standard position, we see that its terminal side does not lie along any 

of the coordinate axes.  We let  ,P x y  denote the point on the terminal side of   that lies on the 

Unit Circle.  By definition,  cosx   and  siny  .  If we drop a perpendicular line segment 

from P  to the x-axis, we obtain a 45°–45°–90° right isosceles triangle whose legs have lengths x 

and y units.  From the properties of isosceles triangles, it follows that y x . 

x

y
1

1

   0, 1P 

  270  

x

y

1

1
   1,0P 
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Figure 1.3. 16 

 

Figure 1.3. 17 

 

 ,P x y  lies on the Unit Circle, so 2 2 1x y  .  Substituting y x  into this equation yields 

22 1x  , or 

 
1 2

2 2
x      

Now,  ,P x y  lies in the first quadrant where 0x  , so 
2

2
x  .  Since y x , we can also 

conclude that 
2

2
y  .  Finally, we have   2

sin 45
2

  and   2
cos 45

2
 . 

4. For 
6

  , as before, the terminal side does not lie on either of the coordinate axes so we 

proceed using a triangle approach.  Letting  ,P x y  denote the point on the terminal side of   

that lies on the Unit Circle, we drop a perpendicular line segment from P  to the x-axis to form a 

30°–60°–90° right triangle.  

Figure 1.3. 18 

 

Figure 1.3. 19 
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Noting that we have half of an equilateral triangle with sides of length 1, we find 
1

2
y   so that 

1
sin

6 2

   
 

.  Since  ,P x y  lies on the Unit Circle, we substitute 
1

2
y   into 2 2 1x y   to get 

2 3

4
x  , or 

3

2
x   .  In the first quadrant 0x  , so 

3
cos

6 2
x

   
 

. 

5. Plotting 60    in standard position, we find   is not a quadrantal angle and set about using a 

triangle approach.  Once again, we get a 30°–60°–90° right triangle and, after computations 

similar to part 4 of this example, we find   3
sin 60

2
y    and   1

cos 60
2

x   . 

Figure 1.3. 20 

 

Figure 1.3. 21 

 

  

It is not by accident that the last three angles in Example 1.3.2 are 30°, 45°, and 60°, or 
6


, 

4


, and 

3


, 

respectively.  In Section 1.2 we used right triangles to obtain these same sine and cosine values for 30°, 

45°, and 60°. 

The Unit Circle approach to calculating trigonometric function values allows us to expand the domain 

imposed by acute angles within a right triangle to include negative angles and other angles outside the 

interval  0 , 90  .  Reference angles can be helpful in determining the sine and cosine of angles outside 

the first quadrant.  

Reference Angles 

When the sine and cosine of an angle are not readily apparent, a reference angle may be used to determine 

the magnitude of the sine and cosine. 
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Definition 1.3. For a non-quadrantal angle  , the reference angle for   (often denoted  ) is the 

acute angle made between the terminal side of   and the x-axis. 

 If   is a Quadrant I or IV angle, the reference angle   is the angle between the terminal side 

of   and the positive x-axis. 

 If   is a Quadrant II or III angle, the reference angle  is the angle between the terminal side 

of   and the negative x-axis. 

If we let P  denote the point     cos ,sin  , then P  lies on the Unit Circle.  Since the Unit Circle 

possesses symmetry with respect to the x-axis, y-axis, and origin, regardless of where the terminal side of 

  lies, there is a point Q  symmetric with P  that determines  ’s reference angle  , as seen in the 

following illustration.  

Figure 1.3. 22 

 

Reference angle   for a Quadrant I angle 

Figure 1.3. 23 

 

Reference angle   for a Quadrant II angle 

Figure 1.3. 24 

 

Reference angle   for a Quadrant III angle 

Figure 1.3. 25 

 

Reference angle   for a Quadrant IV angle 

Note that in the above illustrations,   may be any angle whose terminal side is coincident with the 

terminal side of the angle   indicted in each sketch.  We may use reference angles to determine values of 

 sin   and  cos  , as long as we know  sin   and  cos  , along with the quadrant in which the 

terminal side of   lies. 
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Using Reference Angles to Determine  sin θ  and  cos θ   

Suppose   is the reference angle for  . Then 

    sin sin   for   in Quadrant I or II, 

    sin sin    for   in Quadrant III or IV, 

    cos cos   for   in Quadrant I or IV, 

    cos cos    for   in Quadrant II or III. 

Notice that, in general,    sin sin    and    cos cos   , where the sign, + or −, is determined 

by the quadrant in which the terminal side of   lies. 

It is important to know the sine and cosine values for the standard angles we introduced in Section 1.2, as 

well as the quadrantal angles 0° and 90°, or 0 and 
2


 radians, respectively. 

Figure 1.3. 26 

 

Sine and Cosine Values of Standard Angles 

  degrees   radians  sin    cos   

0° 0 0 1 

30° 6


 

1

2
 3

2
  

45° 4


 2

2
 

2

2
 

60° 3


 3

2
 

1

2
 

90° 2


 1 0 

 

Example 1.3.3. Find the sine and cosine of the following angles. 

 1. 225    2. 
11

6

   3. 
5

4

    4. 
7

3

   

Solution. 

1. We begin by plotting 225    in standard position, and find that its terminal side overshoots the 

negative x-axis to land in Quadrant III.   
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Figure 1.3. 27 

 

Hence, we obtain a reference angle by subtracting 225 180 45    .  Since   is a Quadrant III 

angle, we have  sin 0   and  cos 0  .  Thus, we use the reference angle of 45° to get 

   sin 225 sin 45

2

2

 

 

 

 
   cos 225 cos 45

2

2

 

 

 

 

2. The terminal side of 
11

6

  , when plotted in standard position, lies in Quadrant IV, just shy of 

the positive x-axis.   

Figure 1.3. 28 

 

To find the reference angle, we subtract 
11

2
6 6

    .  Since   is a Quadrant IV angle, 

 sin 0   and  cos 0  , so we use the reference angle of 
6


 to find 

11
sin sin

6 6
1

2

        
   

 
 

11
cos cos

6 6

3

2

        
   



 

3. To plot 
5

4

   , we rotate clockwise an angle of 
5

4


 from the positive x-axis.   
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Figure 1.3. 29 

 

The terminal side of   lies in Quadrant II, making an angle of 
5

4 4

    radians with respect 

to the negative x-axis.  Since   is a Quadrant II angle, using the reference angle of 
4


 gives us 

5
sin sin

4 4

2

2

         
   



 

5
cos cos

4 4

2

2

         
   

 

 

4. Since the angle 
7

3

   measures more than 
6

2
3

  , we find the terminal side of   by rotating 

one full revolution followed by an additional 
7

2
3 3

    radians. 

Figure 1.3. 30 

 

Since   and 
3


 are coterminal, 
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The reader may have noticed that, when expressed in radian measure, the reference angle for a non-

quadrantal angle is easy to spot, as long as the reference angle is a standard angle.  Reduced fraction 

multiples of   with a denominator of 6 have 
6


 as a reference angle, those with a denominator of 4 have 

4


 as their reference angle, and those with a denominator of 3 have 

3


 as their reference angle.  The Unit 

Circle follows, with  ,x y  coordinates labeled at increments of 
6


, 

4


 or 

3


 radians.  Since 

      , cos ,sinx y   , this graphic provides a handy reference for determining the sine and cosine of 

an angle terminating at one of these positions. 

Figure 1.3. 31 

 

Important Points on the Unit Circle 
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The Pythagorean Identity 

You may have noticed that the sine and cosine values for a given angle are related, and you may have 

guessed that if you know one you can find the other.  The Pythagorean identity gives us the tools to do 

just that.  To arrive at the Pythagorean identity, we note that the point       , cos ,sinP x y    lies on 

the Unit Circle and 2 2 1x y  . 

If we substitute  cosx   and  siny   into 

2 2 1x y  , we get      2 2
cos sin 1   . 

Figure 1.3. 32 

 

An unfortunate convention, from a function notation perspective, is to write   2
cos   as  2cos   and 

  2
sin   as  2sin  .  We will follow this convention.  Thus, our identity results in the following 

theorem, one of the most important results in Trigonometry. 

Theorem 1.2. The Pythagorean Identity: For any angle  ,    2 2sin cos 1   . 

The moniker ‘Pythagorean’ brings to mind the Pythagorean Theorem, from which both the distance 

formula and the equation for a circle are derived.  The word ‘identity’ reminds us that, regardless of the 

angle  , the equation in Theorem 1.2 is always true.  If one of  sin   or  cos   is known, Theorem 

1.2 can be used to determine the other, up to a    sign.  If, in addition, we know where the terminal side 

of   lies when in standard position, we can remove the ambiguity of the sign and completely determine 

the missing value.  The following illustration summarizes the signs of sine and cosine for an angle   with 

terminal side lying in one of the four quadrants. 
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Figure 1.3. 33 

 

Example 1.3.4. Using the given information about  , find the indicated value. 

1. If   is a Quadrant II angle with   3
sin

5
  , find  cos  . 

2. If 
3

2

    with   1
cos

5
   , find  sin  . 

3. If  sin 1  , find  cos  . 

Solution.  

1. When we substitute   3
sin

5
   into the Pythagorean identity,    2 2sin cos 1   , we obtain 

 

 

 

 

 

2
2

2

2

3
cos 1

5

9
cos 1

25
16

cos
25

4
cos

5









    
 

 



 

  

Since   is a Quadrant II angle, its terminal side lies in Quadrant II where  cosx   is negative.  

Hence,   4
cos

5
   . 
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Figure 1.3. 34 

 

2. Substituting   1
cos

5
    into    2 2sin cos 1   , we get 

 

 

 

 

 

2

2

2

2

1
sin 1

5

1
sin 1

5
4

sin
5

2
sin

5









    
 

 



 

  

We are given that 
3

2

   , so we know   is a Quadrant III angle.  Since  siny   is 

negative in Quadrant III, we conclude that   2
sin

5
   .  

3. When we substitute  sin 1   into    2 2sin cos 1   , we find  cos 0  . 

  

Symmetry 

Another tool that helps in determining sines and cosines of angles is the symmetry inherent in the Unit 

Circle.  Suppose we wish to know the sine and cosine of 
5

6

  .  We plot   in standard position and, as 

usual, let  ,P x y  denote the point on the terminal side of   that lies on the Unit Circle.  Note that the 

terminal side of   lies 
6


 radians short of one half revolution. 
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Figure 1.3. 35 

 

Figure 1.3. 36 

 

From Example 1.3.2, we know that 
1

sin
6 2

   
 

 and 
3

cos
6 2

   
 

.  This means that the point on the 

terminal side of the angle 
6


, when plotted in standard position, is 

3 1
,

2 2

 
  
 

.  From the figures, it is clear 

that the point  ,P x y  can be obtained by reflecting the point 
3 1

,
2 2

 
  
 

 about the y-axis.  Hence, 

5 1
sin

6 2

   
 

 and 
5 3

cos
6 2

    
 

. 

 
The next example summarizes all the important ideas discussed in this section. 

Example 1.3.5. Suppose   is an acute angle with   5
cos

13
  . 

1. Find  sin   and use this to plot   in standard position. 

2. Find the sine and cosine of the following angles: 

(a)      (b) 2     (c) 3     (d) 
2

    

Solution. 

1. Proceeding as in Example 1.3.4, we substitute   5
cos

13
   into    2 2sin cos 1    and find 

  12
sin

13
   .  Since   is an acute (and therefore Quadrant I) angle,  sin   is positive.  Hence, 

  12
sin

13
  .  To plot   in standard position, we begin our rotation from the positive x-axis to 

the ray that contains the point      5 12
cos ,sin ,

13 13
     

 
.  

x

y
1

1
 

6


   ,P x y   5

6

 

x

y
1

1

 

6



  5

6

 
 

6



  3 1
,

2 2

 
  
 

  3 1
,

2 2
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Figure 1.3. 37 

 

2. (a) To find the sine and cosine of     , we first plot   in standard position.  We can  

imagine the sum of the angles    as a sequence of two rotations: a rotation of   radians 

followed by a rotation of   radians.10  We see that   is the reference angle for  , so we have 

    12
sin sin

13
      and     5

cos cos
13

     .  Since the terminal side of   lies in 

Quadrant III, both  sin   and  cos   are negative.  Thus,   12
sin

13
    and   5

cos
13

   . 

Figure 1.3. 38 

 

Figure 1.3. 39 

 

     

(b) Rewriting 2     as  2     , we can plot   by visualizing one complete 

revolution counter-clockwise followed by a clockwise revolution, or ‘backing up’ of   

radians.  We see that   is  ’s reference angle, and since   is a Quadrant IV angle, we find 

  12
sin

13
    and   5

cos
13

  . 

 
10 Since       ,   may be plotted by reversing the order of rotations here.  Try it! 
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,
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,

13 13
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Figure 1.3. 40 

 

Figure 1.3. 41 

 

2     

(c) Taking a cue from the previous problem, we rewrite 3     as  3     .  The angle 

3  represents one and a half revolutions counter-clockwise, so when we ‘back up’   

radians, we end up in Quadrant II.  The result is   12
sin

13
   and   5

cos
13

   . 

Figure 1.3. 42 Figure 1.3. 43 

 3     

Figure 1.3. 44 

3     

(d) To plot 
2

   , we first rotate 
2


 radians and follow up with   radians.  The reference 

angle here is not  .  (It is important to see why this is the case.  Take a moment to think 

about it before reading on.) 

x

y
1

1

 

  5 12
,

13 13
 
 
 

x

y
1

1

  5 12
,

13 13
  
 

  

 2
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1

1
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y
1

1
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,
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Figure 1.3. 45 

 

Figure 1.3. 46 

 

2

    

Let  ,P x y  be the point on the terminal side of   that lies on the Unit Circle so that 

 cosx   and  siny  .  To find values for x  and y , we use similar triangles. 

 By drawing a perpendicular line segment from P  to the x-axis, we have a right 

triangle with sides of lengths 1, x , and y  (absolute value since lengths must be 

positive).  Note that the angle opposite the side of length y  has measure 
2

  . 

 Drawing a perpendicular line segment from the point 
5 12

,
13 13
 
 
 

 to the y-axis, the 

resulting right triangle has sides of lengths 1, 
5

13
, and 

12

13
, with angle 

2

  . 

Figure 1.3. 47 

 

Figure 1.3. 48 

Figure 1.3. 49 

 

We have similar triangles, from which we find that 
12

13
x   and 

5

13
y  .  Since P  is in 

Quadrant II,   12
cos

13
x     and   5

sin
13

y   . 
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1.3 Exercises 

In Exercises 1 – 5, sketch the oriented arc on the Unit Circle that corresponds to the given real number. 

 1. 
5

6
t


  2. t     3. 6t   4. 2t    5. 12t   

In Exercises 6 – 9, use the given sign of the sine and cosine functions to find the quadrant in which the 

terminal point determined by t  lies. 

 6.  sin 0t   and  cos 0t   7.  sin 0t   and  cos 0t   

 8.  sin 0t   and  cos 0t   9.  sin 0t   and  cos 0t   

10. Use the numbers 0, 1, 2, 3, and 4 to complete the following table of sine and cosine values for 

common angles.  (This exercise serves as a memory tool for remembering these values.) 

   sin    cos   

0 
2

 
2

 

6


 

2
 

2
 

4


 

2
 

2
 

3


 

2
 

2
 

2


 

2
 

2
 

In Exercises 11 – 30, find the exact value of the sine and cosine of the given angle. 

 11. 0   12. 
4

   13. 
3

   14. 
2

   

 15. 
2

3

   16. 
3

4

   17.    18. 
7

6

   

 19. 
5

4

   20. 
4

3

   21. 
3

2

   22. 
5

3

   

 23. 
7

4

   24. 
23

6

   25. 
13

2

    26. 
43

6
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 27. 
3

4

    28. 
6

    29. 
10

3

   30. 117   

In Exercises 31 – 42, use the results developed throughout this section to find the requested value. 

 31. If   4
cos

5
   and  sin 0  , find  sin  . 

 32. If   2
sin

5
    and  cos 0  , find  cos  . 

 33. If   7
sin

25
    with   in Quadrant IV, what is  cos  ? 

 34. If   4
cos

9
   with   in Quadrant I, what is  sin  ? 

 35. If   5
sin

13
   with   in Quadrant II, what is  cos  ? 

 36. If   2
cos

11
    with   in Quadrant III, what is  sin  ? 

 37. If   2
sin

3
    with   in Quadrant III, what is  cos  ? 

 38. If   28
cos

53
   with   in Quadrant IV, what is  sin  ? 

 39. If   2 5
sin

5
   and 

2

    , what is  cos  ? 

 40. If   10
cos

10
   and 

5
2

2

   , what is  sin  ? 

 41. If  sin 0.42    and 
3

2

   , what is  cos  ? 

  42. If  cos 0.98    and 
2

    , what is  sin  ? 
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1.4 The Six Trigonometric Functions  

Learning Objectives 

 Determine the values of the six trigonometric functions from a point on the 

Unit Circle. 

 Know and apply the quotient and reciprocal identities. 

 Find angles that satisfy trigonometric equations. 

 Use reference angles in determining trigonometric function values. 

In this section, we return to the definition of sine and cosine of any angle and extend that definition to 

include the remaining four trigonometric functions: tangent, cosecant, secant and cotangent. 

The Six Trigonometric Functions 

Definition 1.4. Suppose   is an angle plotted in standard position and  ,P x y  is the point on the 

terminal side of   that lies on the Unit Circle.  The trigonometric functions are defined as follows. 

 The sine of  , denoted  sin  , is defined by  sin y  . 

 The cosine of  , denoted  cos  , is defined by  cos x  . 

 The tangent of  , denoted  tan  , is defined by  tan
y

x
  , provided 0x  . 

 The cosecant of  , denoted  csc  , is defined by   1
csc

y
  , provided 0y  . 

 The secant of  , denoted  sec  , is defined by   1
sec

x
  , provided 0x  . 

 The cotangent of  , denoted  cot  , is defined by  cot
x

y
  , provided 0y  . 

In Section 1.3, we defined  sin   and  cos   for angles   using the coordinate values of points on the 

Unit Circle.  Since  sin y   and  cos x   by this definition, it is customary to rephrase the 

remaining four trigonometric functions in terms of sine and cosine.  To do so, we simply replace y  with 

 sin   and x  with  cos   in the preceding definition.  This results in our reference to the tangent, 

cosecant, secant and cotangent as quotient identities or reciprocal identities.  
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Quotient Identities 

    
 

sin
tan

cos

y

x





  , provided  cos 0x   .  

    
 

cos
cot

sin

x

y





  , provided  sin 0y   . 

 

Reciprocal Identities 

    
1 1

csc
siny




  , provided  sin 0y   . 

    
1 1

sec
cosx




  , provided  cos 0x   . 

 The cotangent may also be thought of as the reciprocal of the tangent: 

   
1 1

cot
tan

x
yy

x




   , provided  tan 0   or, equivalently, 0y  . 

Note that, of the six trigonometric functions, only sine and cosine are defined for all angles.  Before using 

the quotient and reciprocal identities in an example, the following mnemonic may help with remembering 

the signs of sine, cosine, and tangent values in each quadrant.  We assign the first letter of each word in 

the phrase “All Students Take Calculus” to Quadrants I, II, III, and IV, respectively.  Now we observe 

that sine, cosine, and tangent are All positive in Quadrant I; the Sine alone is positive in Quadrant II; the 

Tangent alone is positive in Quadrant III; the Cosine alone is positive in Quadrant IV. 

Figure 1.4. 1 

 

x

y

AS

T C
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Example 1.4.1. Find the indicated value, if it exists. 

 1.  sec 60  2. 
7

csc
4

 
 
 

 3.  cot 3  

 4.  tan  , where   is any angle coterminal with 
3

2


 

 5.  cos  , where  csc 5    and   is a Quadrant IV angle 

 6.  sin  , where  tan 3   and 
3

2

    

Solution. 
1. For  sec 60 , the reciprocal identity for secant will help us out. 

 

   
1

sec 60
cos 60

1
 
1 2

2










 

2. To find 
7

csc
4

 
 
 

, we apply the reciprocal identity for cosecant ant note that 
7 2

sin
4 2

    
 

. 

 

7 1
csc

74 sin
4

1

2 2

2




      
 
 




 

  

3. In determining the value of  cot 3 , since the reference angle for 3   radians is not one of the 

standard angles from Section 1.3, we resort to the calculator for a decimal approximation.  We 

use the quotient identity for cotangent and check that our calculator is in radian mode. 

 
   

 
cos 3

cot 3
sin 3

7.015



 

 

Noting that    
1

cot
tan




 , this problem could also be solved as follows.11 

 
11 Cosecant, secant, and cotangent are not available on most calculators so it is necessary to convert to expressions 

involving sine, cosine, and/or tangent before finding an approximate value with a calculator. 
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1
cot 3

tan 3

7.015



 

  

4. To determine  tan  , where   is coterminal with 
3

2


, we find   3

sin sin 1
2

     
 

 and 

  3
cos cos 0

2

    
 

.  Computing    
 

sin
tan

cos





  results in 

1

0


, so  tan   is undefined.  

5. We are given that  csc 5    and we are looking for the value of  cos  .  From 

   
1

csc
sin




 , it follows that   1
sin

5
   .  We apply the Pythagorean identity as follows. 

 

   

 

 

 

2 2

2

2

2

sin cos 1

1
cos 1

5

4
cos

5
2

cos
5

 







 

    
 



 

 

The problem states that   is a Quadrant IV angle, so  cos 0   and we find   2
cos

5
  . 

6. Given that  tan 3  , we must determine the value of  sin  .  From the quotient identity, we 

know 
 
 

sin
3

cos




 , but be careful!  We can NOT assume any values for  sin   or  cos  .  We 

CAN assume that    sin 3cos  .  It follows that    1
sin cos

3
   and we use this equality, 

along with the Pythagorean identity,    2 2sin cos 1   , to determine  sin  . 

 

   

   

 

 

 

2
2

2 2

2

2

1
sin sin 1

3

1
sin sin 1

9
10

sin 1
9

9
sin

10
3

sin
10
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Since the problem states that 
3

2

   ,   is in Quadrant III where  sin 0  .  Thus, 

  3
sin

10
   . 

  

While the quotient and reciprocal identities allow us to always convert problems involving tangent, 

cotangent, secant, and cosecant to problems involving sine and cosine, it is not always convenient to do 

so.12  The trigonometric function values of standard angles are summarized in the following table.  Note 

that  tan  ,  cot  ,  sec  , and  csc   can be derived from  sin   and/or  cos   using the quotient 

and reciprocal identities. 

Trigonometric Function Values of Standard Angles 

  

degrees 

  

radians 
 sin    cos    tan    cot    sec    csc   

0° 0 0 1 0 undefined 1 undefined 

30° 
6


 

1

2
 3

2
 

1 3

33
  3  2 2 3

33
  2 

45° 
4


 1 2

22
  

1 2

22
  1 1 1 1 

60° 
3


 3

2
 

1

2
 3  1 3

33
  2 2 2 3

33
   

90° 
2


 1 0 undefined 0 undefined 1 

Before working with tangent and cotangent values, we apply table values for sine and cosine in a search 

for angles that satisfy given trigonometric equations. 

Finding Angles that Satisfy Sine and Cosine Equations 

Our next example asks us to solve some very basic trigonometric equations.13 

 
12 As we shall see shortly, when solving equations involving secant and cosecant, we usually convert back to sines 

and cosines.  However, when solving for tangent or cotangent, we usually stick with what we’re dealt. 
13 We will study trigonometric equations more formally in Chapter 4.  Enjoy these relatively straightforward 

exercises while they last! 



T1-68 Foundations of Trigonometry 
 

Example 1.4.2. Find all angles that satisfy the given equation. 

 1.   1
cos

2
   2.   1

sin
2

    3.  cos 0   

Solution. Since there is no indication whether to use degrees or radians, we will default to using radian 

measure in each of these problems.  This choice will be justified later in the text when we study what is 

known as Analytic Trigonometry.  In those sections to come, radian measure will be the only appropriate 

angle measure so it is worth the time to become fluent in radians now. 

1. If   1
cos

2
  , then the terminal side of  , when plotted in standard position, intersects the Unit 

Circle at 
1

2
x  .  This means   is a Quadrant I or Quadrant IV angle with reference angle 

3


. 

 
Figure 1.4. 2 

 

Figure 1.4. 3 

 

One solution in Quadrant I is 
3

  , and since all other Quadrant I solutions must be coterminal 

with 
3


, we find 2

3
k

    for integers k .14  Proceeding similarly for the Quadrant IV case, 

we find a solution to   1
cos

2
   is 

5

3


, so our answer in this quadrant is 

5
2

3
k

    for 

integers k . 

2. If   1
sin

2
   , then when   is plotted in standard position its terminal side intersects with the 

Unit Circle at 
1

2
y   .  From this, we determine   is a Quadrant III or Quadrant IV angle with 

reference angle 
6


. 

 
14 Recall in Section 1.1, two angles in radian measure are coterminal if and only if they differ by an integer multiple 

of 2 .  Hence, to describe all angles coterminal with a given angle, we add 2 k  for integers 0, 1, 2,k     . 

x

y
1

1

 

3



 1
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x

y
1

1
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Figure 1.4. 4 

 

Figure 1.4. 5 

 

In Quadrant III one solution is 
7

6


, so we capture all Quadrant III solutions by adding integer 

multiples of 2 : 
7

2
6

k
   .  In Quadrant IV, one solution is 

11

6


 so all solutions here are of 

the form 
11

2
6

k
    for integers k . 

3. The angles with  cos 0   are quadrantal angles whose terminal sides, when plotted in standard 

position, lie along the y-axis.   

Figure 1.4. 6 

 

While, technically speaking, 
2


 is not a reference angle, we can still use it to find our answers.  If 

we follow the procedure set forth in the previous examples, we find 2
2

k
    and 

3
2

2
k

    for integers k .  While this solution is correct, it can be shortened to 
2

k
    

for integers k .  (Can you see why this works from the diagram?) 
  

One of the key concepts to take from the previous example is that, in general, solutions to trigonometric 

equations consist of infinitely many answers.  To get a feel for the answers, the reader is encouraged to 

follow our mantra ‘When in doubt, write it out!’  For example, in part 2 of Example 1.4.2, another 

x

y
1

1

  1
2

 

6

 x

y
1

1

  1
2

 

6



x

y
1

1
 

2



 

2



 



T1-70 Foundations of Trigonometry 
 

Quadrant IV solution to   1
sin

2
    is 

6

   .  Hence, the family of Quadrant IV answers could have 

been written 2
6

k
     for integers k .  While on the surface this family may look different than the 

stated solution of 
11

2
6

k
    for integers k , we leave it to the reader to show they represent the same 

list of angles. 

Finding Angles that Satisfy Other Trigonometric Equations 

Before solving equations that contain  tan  ,  csc  ,  sec  , or  cot  , we return to the reference 

angle for  , as identified in Section 1.3.  By coupling the quotient and reciprocal identities with our use 

of reference angles in determining  sin   and  cos  , we have the following. 

Using Reference Angles to Determine Trigonometric Function Values 

Suppose   is the reference angle for  .  Then, 

    sin sin   and    csc csc   in Quadrants I & II, 

    sin sin    and    csc csc    in Quadrants III & IV, 

    cos cos   and    sec sec   in Quadrants I & IV, 

    cos cos    and    sec sec    in Quadrants II & III, 

    tan tan   and    cot cot   in Quadrants I & III, 

    tan tan    and    cot cot    in Quadrants II & IV. 

Notice that, in general,    sin sin   ,    cos cos   ,    tan tan   ,    csc csc   , 

   sec sec   , and    cot cot   , where the sign, + or −, is determined by the quadrant in 

which the terminal side of   lies.  The following example makes good use of reference angles. 

Example 1.4.3. Find all angles that satisfy the given equation. 

 1.  sec 2   2.  tan 3   3.  cot 1    
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Solution. 

1. To solve  sec 2  , we convert to cosines and get 
 

1
2

cos 
 , or   1

cos
2

  .  This is the same 

equation we solved in Example 1.4.2, so we know the answer is 2
3

k
    or 

5
2

3
k

    

for integers k . 

2. From the table ‘Trigonometric Function Values of Standard Angles’, we see tan 3
3

   
 

.  It 

follows that the solutions to  tan 3   must have a reference angle of 
3


.  Our next task is to 

determine in which quadrants the solutions to this equation lie.  Since the tangent is defined as the 

ratio 
y

x
 of points  ,x y  on the Unit Circle with 0x  , the tangent is positive when x  and y  

have the same sign (i.e. when they are both positive or both negative.)  This happens in Quadrants 

I and III. 

Figure 1.4. 7 

 

In Quadrant I we get the solutions 2
3

k
    for integers k , and for Quadrant III we get 

4
2

3
k

    for integers k .  While these descriptions of the solutions are correct, they can be 

combined as 
3

k
    for integers k .  The latter form of the solution is best understood by 

looking at the geometry of the situation, below.15 

 

 
15 See Example 1.4.2, part 3, for another example of this kind of simplification of the solution. 
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Figure 1.4. 8 

 

3. We find that 
4


 has a cotangent of 1.  This tells us the solutions to  cot 1    have a reference 

angle of 
4


.  To find the quadrants in which our solutions lie, we note that  cot

x

y
   for a point 

 ,x y  on the Unit Circle where 0y  .  If  cot   is negative, then x  and y  must have different 

signs (i.e. one positive and one negative.)  Hence, our solutions lie in Quadrants II and IV.  Our 

Quadrant II solution is 
3

2
4

k
   , and for Quadrant IV we get 

7
2

4
k

   , for integers k .  

Can these be combined?  Indeed, they can!  One such way to capture all the solutions is 

3

4
k

    for integers k . 

Figure 1.4. 9 

 

  

Suppose we are asked to solve an equation such as   1
sin

2
t   .  Recall our introduction of t  in Section 

1.3 as a real number.  The real number t  may be associated with an oriented arc on the Unit Circle that 

x

y
1

1

 

3



 

3



 

x
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1

1
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subtends an angle of t  radians.  Indeed, we solve   1
sin

2
t    in the same exact manner16 as we did in 

Example 1.4.2 part 2.  Our solution, which is only cosmetically different in that the variable used is t  

rather than  , is 
7

2
6

t k
    or 

11
2

6
t k

    for integers k .  As we progress in our study of the 

trigonometric functions, keep in mind that any properties developed that regard them as functions of 

angles in radian measure apply equally well if the inputs are regarded as real numbers.  

 

 

 
16 Well, to be pedantic, we would technically be using reference numbers or reference arcs instead of reference 

angles, but the idea is the same. 
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1.4 Exercises 

In Exercises 1 – 20, find the exact value or state that it is undefined. 

 1. tan
4

 
 
 

 2. sec
6

 
 
 

 3. 
5

csc
6

 
 
 

 4. 
4

cot
3

 
 
 

 

 5. 
11

tan
6

  
 

 6. 
3

sec
2

  
 

 7. csc
3

  
 

 8. 
13

cot
2

 
 
 

 

 9.  tan 117  10. 
5

sec
3

  
 

 11.  csc 3  12.  cot 5  

 13. 
31

tan
2

 
 
 

 14. sec
4

 
 
 

 15. 
7

csc
4

  
 

 16. 
7

cot
6

 
 
 

 

 17. 
2

tan
3

 
 
 

 18.  sec 7  19. csc
2

 
 
 

 20. 
3

cot
4

 
 
 

 

In Exercises 21 – 44, find all angles   that satisfy the given equation.  Give exact values in radians. 

 21.   1
sin

2
   22.   3

cos
2

    23.  sin 0   24.   2
cos

2
   

 25.   3
sin

2
   26.  cos 1    27.  sin 1    28.   3

cos
2

   

 29.  cos 1.001    30.  tan 3   31.  sec 2   32.  csc 1    

 33.   3
cot

3
   34.  tan 0   35.  sec 1   36.  csc 2   

 37.  cot 0   38.  tan 1    39.  sec 0   40.   1
csc

2
    

 41.  sec 1    42.  tan 3    43.  csc 2    44.  cot 1    

In Exercises 45 – 60, solve the equation for the indicated angle/real number.  Give exact values in radians. 

 45.  cos 0t   46.   2
sin

2
t    47.  cos 3x   48.   1

cos
2
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 49.  sin 2t    50.  cos 1t   51.  sin 1x   52.   2
cos

2
x    

 53.  cot 1   54.   3
tan

3
   55.   2 3

sec
3

x    56.  csc 0t   

 57.  cot 3    58.   3
tan

3
x    59.   2 3

sec
3

t   60.   2 3
csc

3
   

61. Explain why the fact that   3
tan 3

1
    does not necessarily mean  sin 3   and  cos 1  . 
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1.5 Trigonometric Identities  

Learning Objectives 

 Apply Pythagorean identities and Pythagorean conjugates. 

 Verify that a trigonometric equation is an identity. 

You may recall that an equation is an identity if it holds true for all independent variables for which each 

side of the equation is defined.  We have already seen the following identities in our study of 

Trigonometry. 

Pythagorean Identity:    2 2sin cos 1    

Quotient Identities:    
 

sin
tan

cos





 ,    

 
cos

cot
sin





  

Reciprocal Identities:    
1

csc
sin




 ,    
1

sec
cos




 ,    
1

cot
tan




  

Notice that the Pythagorean identity holds for all real values of   while, for example,    
 

sin
tan

cos





  

holds for all values of   for which  cos 0  .  These are the angles whose terminal side, in standard 

position, is not on the y-axis.  Our next task is to use these identities to derive Pythagorean identities for 

the remaining four trigonometric functions. 

Variations of the Pythagorean Identity 

Theorem 1.2 states that, for any angle  ,    2 2sin cos 1   .  Through manipulating the identity, we 

will obtain two alternate versions relating tangent and secant, followed by cotangent and cosecant.  To 

obtain an identity relating tangent and secant, we start with    2 2sin cos 1    and, assuming 

 cos 0  , divide both sides of the equation by  2cos  . 

 

   
 
 

 
   

 
   

2 2

2 2

2 2 2

2 2

sin cos 1

sin cos 1

cos cos cos

sin 1
1

cos cos
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Applying the quotient and reciprocal identities, we get the Pythagorean identity    2 2tan 1 sec   .  

Next, for an identity relating cotangent and cosecant, we assume  sin 0   and divide both sides of 

   2 2sin cos 1    by  2sin  . 

 

   
 
 

 
   

 
   

2 2

2 2

2 2 2

2 2

sin cos 1

sin cos 1

sin sin sin

cos 1
1

sin sin

 

 
  


 

 

 

   
       
   

  

Applying the quotient and reciprocal identities, we get the third Pythagorean identity, 

   2 21 cot csc   .   

The three Pythagorean identities, along with some of their other common forms, are summarized in the 

following theorem. 

Theorem 1.3. The Pythagorean Identity and its Variations: 

1.    2 2sin + cos = 1θ θ  

Alternate Forms:    2 21 sin cos    and    2 21 cos sin     

2.    2 2tan +1 = secθ θ  

Alternate Forms:    2 2sec 1 tan    and    2 2sec tan 1    

3.    2 21+ cot = cscθ θ  

Alternate Forms:    2 2csc 1 cot    and    2 2csc cot 1     

Trigonometric identities play an important role, both in Trigonometry and Calculus.  We use them in this 

book to find the values of the trigonometric functions of an angle and to solve equations.  In Calculus, 

they are needed to rewrite expressions in a format that enables or simplifies integration.   

Verifying that a Trigonometric Equation is an Identity 

To verify or prove an identity, we typically start with one side of the equation and reduce it to the other 

side.  In the next few examples, we will demonstrate several techniques to do just that, including: perform 

algebraic operations; factor; rewrite each trigonometric function in terms of the trigonometric functions 

that appear on the other side; multiply numerator and denominator by the same expression; apply 

trigonometric identities; combine two or more of the previous techniques. 
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Example 1.5.1. Verify the identity          sec tan sec tan 1      . 

Solution. The left side is the more complicated side, so we begin with the left side.  We perform the 

indicated algebraic operation, then apply a trigonometric identity, bringing us to the right side of the 

equation. 

 

         
           
   

2 2

2 2

n

sec tan sec tan

     sec sec tan tan sec tan

     sec tan

     1         g                       

i

      

binomial multiplicat o

      y  a                                   

n

P th  a re o

   

     

 

 

   

 



     

 identity

  

We have verified that          sec tan sec tan 1      . 

  

Example 1.5.2. Verify the identity        
3 3

6sec tan
1 sin 1 sin

 
 

 
 

. 

Solution. The right side is the more complicated side in this equation, so we start with the right side, 

performing the indicated algebraic operation and applying identities.   

 

   
     
     

   
 

 
 

 
 

 
 
 

2

2

2

combine fractions

P

3 1 sin 3 1 sin3

ythagorean i
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d

3

1 sin 1 sin 1 sin 1 sin

3 3s n 3 3sin

1 sin

6sin

1 sin

6sin

cos

sin1
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entit

s co
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    s6 ese qc t uotient & reciprocal identan iti                            

 

We have verified that        
3 3

6sec tan
1 sin 1 sin

 
 

 
 

. 

  

Example 1.5.3. Verify the identity 
   
   

   
 

3 3

2 2

sin cos sec sin

sin cos tan 1

   
  

 


 
. 

Solution. We start with the left side and factor both numerator and denominator.   
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sin cos sin sin c
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sin sin cos cos

sin cos

1 sin cos

sin c
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identity

1 cos
                                                 multiply by 

1 cos

                                                             quotient

sin cos1

cos cos

sin cos

cos cos

sec sin

tan 1

θ

θ

 
 

 
 

 











 & reciprocal identities

  

We have verified the identity.  Note that, while it requires more steps, we could also verify this identity by 

beginning with the right side of the equation, as follows. 

Alternate Solution. We start with the right side of the equation, applying reciprocal and quotient 

identities. 
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1 sin cos
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3 3

2 2

3 3

2 2

cos sin cos

sin cos

sin cos 1 cos cos sin 1 sin

sin cos

sin cos cos cos s

  Pythagorean identity

in sin

sin cos

sin cos

sin cos
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Example 1.5.4. Verify the identity 
 
     

sec 1

1 tan cos sin


  


 

. 

Solution. We start with the left side and rewrite its trigonometric functions in terms of the 

trigonometric functions that appear on the right. 

 

 
 

 
 
 

 
 
 

 
 

reciprocal identity for secant & quotient identity for tangent

multiplication by LCD 
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1 tan sin
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Once again, we have arrived at the opposite side of the equation, verifying the given identity. 

  

Example 1.5.5. Verify the identity 
 
 

 
 

sin 1 cos

1 cos sin

 
 





. 

Solution. It is debatable which side of the equation is more complicated.  Noting that the denominator 

on the left side is  1 cos   while the numerator on the right side is  1 cos  , we select the strategy of 

starting with the left side and multiplying the numerator and denominator by the quantity  1 cos  . 
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After arriving at the right side, we have verified the identity.  An alternate solution follows. 

Alternate Solution. We start with the right side of the equation. 

 

 
 

     
     

 
     

 
     
 
 

2

2

1 cos 1 cos1 cos

sin sin 1 cos

1 cos

sin 1 cos

sin

sin 1 cos

sin

1 cos

 
  


 


 




 















 

    

In the preceding example, we see that multiplying  1 cos   by  1 cos   produces a difference of 

squares that can be simplified to one term using Theorem 1.3.  This is exactly the same kind of 

phenomenon that occurs when we multiply expressions such as 1 2  by 1 2 .  For this reason, the 

quantities  1 cos   and  1 cos   are called ‘Pythagorean conjugates’.  The following list includes 

other Pythagorean conjugates. 

Pythagorean Conjugates 

  1-cos θ  and  1+ cos θ  since          2 21 cos 1 cos 1 cos sin         

  1- sin θ  and  1+sin θ  since          2 21 sin 1 sin 1 sin cos         

  sec -1θ  and  sec +1θ  since          2 2sec 1 sec 1 sec 1 tan         

    sec - tanθ θ  and    sec + tanθ θ   

since              2 2sec tan sec tan sec tan 1           

  csc -1θ  and  csc +1θ  since          2 2csc 1 csc 1 csc 1 cot         

    csc - cotθ θ  and    csc + cotθ θ  

since              2 2csc cot csc cot csc cot 1           

Verifying trigonometric identities requires a healthy mix of tenacity and inspiration.  You will need to 

spend many hours struggling just to become proficient in the basics.  Like many things in life, there is no 

short cut here.  There is no complete algorithm for verifying identities.  Nevertheless, a summary of some 

strategies that may be helpful (depending on the situation) follows. 
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Strategies for Verifying Identities 

 Start with the side of the identity that looks easier for you to manipulate. 

 Use the quotient and reciprocal identities to write functions on one side of the identity in terms 

of the functions on the other side of the identity.  Simplify any resulting complex fractions. 

 Add rational expressions with unlike denominators by obtaining common denominators. 

 Use the Pythagorean identities in Theorem 1.3 to exchange sines and cosines, tangents and 

secants, cotangents and cosecants, and simplify sums or differences of squares to one term. 

 Multiply numerator and denominator by Pythagorean conjugates in order to take advantage of 

the Pythagorean identities in Theorem 1.3. 

 If you find yourself stuck working with one side of the identity, try starting with the other side 

of the identity or try writing everything in terms of sines and cosines. 

Most importantly, keep in mind that we are not solving equations.  To show that an equation is not an 

identity, all that is needed is to show that the two sides are not equal for just one value of the independent 

variable.  However, to verify identities, we choose one side of the identity and work with that side until it 

matches the other side.  An alternate strategy of manipulating both sides of an equation until they arrive at 

a common expression may be used by some instructors in verifying identities.  Verifying identities is an 

important skill and we will work with identities again in Chapter 3, as more tools become available.  

Time spent now in developing some proficiency will be useful throughout the course.  We finish off this 

section with a couple of equations that may or may not be identities. 

Example 1.5.6. Prove or disprove that the given equation is an identity. 

1.         
 

3
2 sin sin

sin cos 1 2
cos

 
 




    

2.         2 2 2sin cos sin cos       
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Solution. 

1. To prove that         
 

3
2 sin sin

sin cos 1 2
cos

 
 




    is an identity, we begin with the ‘more 

complicated’ right side, although either side would work. 
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2 2

sin sin cos 2sin 2sin
1

Pythagorean identity
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2
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cos 2si
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cos
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    2

sin cos



  

  

Having verified that the right side equals the left side, we have proved that the equation is an 

identity.  

2. We can show that         2 2 2sin cos sin cos       is not an identity by finding one value 

of   for which the left side is not equal to the right side.  One such value is 
6

  . 

Left side: 

 

22

2

2

1 3
sin cos

6 6 2 2

1 3

2

1 3

4

                      

 
   
 




  

Right side: 

22
2 2 1 3

sin cos
6 6 2 2

1 3

4 4
1

2

                          

 

 

  

Since 
 2

1 3
0

4


  and 

1
0

2
  , 

 2

1 3 1

4 2


  .  Therefore, the equation is not an identity. 
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1.5 Exercises 

In Exercises 1 – 47, verify the identity.  Assume that all quantities are defined. 

 1.    cos sec 1    2.      tan cos sin    

 3.    sin csc 1    4.    tan cot 1    

 5.      csc cos cot    6. 
 
     2

sin
sec tan

cos


 


  

 7. 
 
     2

cos
csc cot

sin


 


  8. 

 
     1 sin

sec tan
cos


 




   

 9. 
 

     1 cos
csc cot

sin


 




   10. 
 
   2

cos
sec

1 sin








 

 11. 
 
   2

sin
csc

1 cos








 12. 

 
   2

sec
cos

1 tan








 

 13. 
 
   2

csc
sin

1 cot








 14. 

 
   2

tan
cot

sec 1








 

 15. 
 
   2

cot
tan

csc 1








 16.    2 24sin 4cos 4    

 17.    2 29 sin cos 8     18.        3 2tan tan sec tan      

 19.       25 2sin 1 cos sin     20.       410 2 2sec 1 tan sec     

 21.          2 3cos tan tan sin cos       22.        4 2 2 4sec sec tan tan       

 23. 
 
 

 
 

cos 1 1 sec

cos 1 1 sec

 
 

 


 
 24. 

 
 

 
 

sin 1 1 csc

sin 1 1 csc

 
 

 


 
 

 25. 
 
 

 
 

1 cot tan 1

1 cot tan 1

 
 

 


 
 26. 

 
 

   
   

1 tan cos sin

1 tan cos sin

  
  

 


 
 

 27.        tan cot sec csc      28.        csc sin cot cos      

 29.        cos sec tan sin       30.         cos tan cot csc      
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 31.         sin tan cot sec      32. 
     21 1

2csc
1 cos 1 cos


 

 
 

 

 33. 
       1 1

2csc cot
sec 1 sec 1

 
 

 
 

 34. 
       1 1

2sec tan
csc 1 csc 1

 
 

 
 

 

 35. 
         1 1

2cot
csc cot csc cot


   

 
 

 36. 
 
 

 
     cos sin

sin cos
1 tan 1 cot

 
 

 
  

 
 

 37. 
       1

sec tan
sec tan

 
 

 


 38. 
       1

sec tan
sec tan

 
 

 


 

 39. 
       1

csc cot
csc cot

 
 

 


 40. 
       1

csc cot
csc cot

 
 

 


 

 41. 
       21

sec sec tan
1 sin

  


 


 42. 
       21

sec sec tan
1 sin

  


 


 

 43. 
       21

csc csc cot
1 cos

  


 


 44. 
       21

csc csc cot
1 cos

  


 


 

 45. 
 
 

 
 

cos 1 sin

1 sin cos

 
 





 46.      

 
sin

csc cot
1 cos


 


 


 

 47. 
 
      21 sin

sec tan
1 sin


 




 


 

In Exercises 48 – 51, verify the identity.  You may need to review the properties of absolute value and 

logarithms before proceeding. 

 48.    ln sec ln cos    49.    ln csc ln sin    

 50.        ln sec tan ln sec tan        51.        ln csc cot ln csc cot        
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1.6 Beyond the Unit Circle  

Learning Objectives 

 Given any point on the terminal side of an angle in standard position, 

determine the values of the six trigonometric functions for that angle.  

 Given the quadrant of an angle and the value of one trigonometric function 

for that angle, determine the values of the remaining five trigonometric 

functions. 

Recall that in defining the sine and cosine functions in Section 1.3, we assigned to each angle a position 

on the Unit Circle.  Here we broaden our scope to include circles of radius r  centered at the origin. 

Determining Sine and Cosine 

Consider for the moment the acute Quadrant I angle  , drawn below in standard position.  

Figure 1.6. 1 

 

Figure 1.6. 2 

 

Let  ,Q x y  be the point on the terminal side of   that lies on the circle of radius r , centered at the 

origin, and let  ', 'P x y  be the point on the terminal side of   that lies on the Unit Circle.  Now consider 

dropping perpendiculars from P  and Q  to create two triangles OPA  and OQB .  These triangles are 

similar.17  Thus, it follows that 
' 1

x r
r

x
  , from which  'x r x .  We similarly find  'y r y .  Since, by 

definition18,  ' cosx   and  ' siny  , we get the coordinates of Q  to be  cosx r   and 

 
17 Do you remember why?  If not, refer to Section 1.2. 
18 See Section 1.3. 

y

1

x

r

 

   ', 'P x y

   ,Q x y

y

x

O

   ', 'P x y

   ,Q x y
      cos , sinr r 

 
   ',0A x

   ,0B x
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 siny r  .  Also, from triangle OQB , 2 2 2r x y   and, since the radius is a positive quantity, 

2 2r x y  .  This means that not only can we describe the coordinates of Q  in terms of  sin   and 

 cos  , we can also express  sin   and  cos   in terms of the coordinates of Q . 

By use of reference angles, we obtain these results for all non-quadrantal angles.  Moreover, these results 

hold for the quadrantal angles.  Our results are summarized in the following theorem. 

Theorem 1.4. Suppose   is an angle in standard position and  ,Q x y  is a point on the terminal side 

of   that lies on the circle of radius r , centered at the origin.  Then 

1. 2 2 2x y r  ,  cosx r   and  siny r  .  Rewriting these we have 

2.  
2 2

sin
y y

r x y
  


 and  

2 2
cos

x x

r x y
  


 

In the case of the Unit Circle we have 2 2 1r x y   , so Theorem 1.4 reduces to our Unit Circle 

definitions of  sin   and  cos  . 

Example 1.6.1.  Suppose that the terminal side of an angle  , when plotted in standard position, 

contains the point  4, 2Q  .  Find  sin   and  cos  .  

Solution. Using Theorem 1.4 with 4x   and 2y   , we find  

   

2 2

2 2
4 2

20

2 5

r x y 

  





 

Thus,   2
sin

2 5

y

r
 

   and   4
cos

2 5

x

r
   . 

We simplify to get   1
sin

5
    and   2

cos
5

  . 

Figure 1.6. 3 

 

   

   









x

y

   4, 2Q 
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Determining the Other Four Trigonometric Functions 

We have generalized the sine and cosine functions from coordinates on the Unit Circle to coordinates on 

circles of radius r .  We use the results from Theorem 1.4,  sin
y

r
   and  cos

x

r
  , where the point 

 ,x y  on the circle of radius r , centered at the origin, lies along the terminal side of an angle  , plotted 

in standard position, to determine the remaining four trigonometric functions.  Additionally, we make use 

of the quotient and reciprocal identities as follows. 

    
 

sin
tan

cos

y r

x r





   so, we have  tan

y

x
  , as long as 0x   

    
1

csc
sin

r

y



   for 0y   

    
1

sec
cos

r

x



   for 0x    

    
1

cot
tan

x

y



   for 0y   

 Theorem 1.5. Suppose  ,Q x y  is the point on the terminal side of an angle  , plotted in standard 

position, that lies on the circle of radius r , centered at the origin.  Then 

  tan
y

x
  , provided 0x  . 

  csc
r

y
  , provided 0y  . 

  sec
r

x
  , provided 0x  . 

  cot
x

y
  , provided 0y  . 

Keep in mind that 0x   means that the terminal side of the angle   is not on the y-axis, while 0y   

means that the terminal side of the angle   is not on the x-axis. 

Example 1.6.2. Suppose the terminal side of  , when plotted in standard position, contains the point 

 3,4Q  .  Find the values of the six trigonometric functions of  .  

Solution. The radius of the circle containing the point  3,4Q   is 
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2 2

2 2
3 4

5

r x y 

  



 

With 3x   , 4y   and 5r  , we apply 

Theorems 1.4 and 1.5 to find the values of the six 

trigonometric functions of  .19 

Figure 1.6. 4 

 

 

 

 

4
sin

5
3

cos
5
4

tan
3

y

r
x

r
y

x







 

  

  

 

 

 

 

5
csc

4

5
sec

3
3

cot
4

r

y

r

x
x

y







 

  

  

 

  

Example 1.6.3. Suppose   is a Quadrant IV angle with  cot 4   .  Find the values of the five 

remaining trigonometric functions of  . 

Solution. We look for a point  ,Q x y  that lies on the terminal side of   when   is plotted in standard 

position. 20  We are given that   is a Quadrant IV angle, so we know 0x   and 0y  .  Also, 

 cot 4
x

y
    .  Since 

4
4

1
 


, we may choose21 4x   and 1y   , from which 

 
19 For convenience, the sketch shows 0 2   .  In reality,   may be any angle, plotted in standard position, that 

contains the point  3,4Q   on its terminal side.  
20 Again,   may be any angle, plotted in standard position, with Q on its terminal side. 

21 We may choose any values x and y so long as 0x   , 0y   and 4
x

y
  .  For example, we could choose 8x   

and 2y   .  The fact that all such points lie on the terminal side of   is a consequence of the fact that the 

terminal side of   is the portion of the line with slope 
1

4
  that extends from the origin into Quadrant IV. 

x

y

r

   3,4Q 
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2 2

2 2
4 1

17

r x y 

  



 

Figure 1.6. 5 

 

The five remaining trigonometric function values follow. 

 

 

 

1
sin

17
4

cos
17
1

tan
4

y

r

x

r

y

x







  

 

  

 

 

 

17
csc 17

1

17
sec

4

r

y

r

x





   


 

 

 

  

Example 1.6.4. If   5
sec

4
   and  sin 0  , find  tan  . 

Solution. Knowing that  sin 0  , we can determine the value of  sin   by first finding  cos  .  We 

have    
5 1

sec
4 cos




  , from which   4
cos

5
  .  Applying the Pythagorean identity results in the 

following: 

 

   

 

 

 

2 2

2
2

2

sin cos 1

4
sin 1

5

9
sin

25
3

sin
5

 







 

   
 



 

  

Since  sin 0  , we choose   3
sin

5
    and proceed with finding  tan  . 

    
 

sin 3 5
tan

cos 4 5







   

Simplifying, we have   3
tan

4
   . 

  

x

y

r

 

   4, 1Q 
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We finish off this section, and chapter, with an illustration that demonstrates the connection between 

points on the Unit Circle and points ‘beyond the Unit Circle’. 

Example 1.6.5. In the following diagram, if 
2 2

,
2 2

A
 

   
 

, determine the coordinates of points B  

and C . 

Figure 1.6. 6 

 

Solution. If we drop vertical line segments from each of the points A , B  and C  to the x-axis, we 

have the three right triangles 'OAA , 'OBB  and 'OCC .  Since all three of these right triangles share 

the same angle at the origin, they are similar triangles.  

Figure 1.6. 7 

 

Figure 1.6. 8 
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2 2

,
2 2
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, we find 
2

'
2

OA   and 
2

'
2

A A  .  Since 'OAA  and 'OBB  are similar 

triangles, 
' '

' '

OA OA A A

OB OB B B
  .  With 1OA   and 2OB  , we find ' 2OB   and ' 2B B  .  Thus, point 

1

1 2 3

2

3

A
B

C

x
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B  has coordinates  2, 2 .  Similarly, 
' '

' '

OA OA A A

OC OC C C
   and 3OC  ,  resulting in point C  having 

coordinates  
3 2 3 2

,
2 2

 
  
 

. 
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1.6 Exercises  

In Exercises 1 – 8, let   be an angle in standard position whose terminal side contains the given point.  

Find the exact values of the six trigonometric functions of  . 

 1.  1,5A  2.  3, 1B   3.  6, 2C    4.  10,12D   

 5.  7,24P   6.  3,4Q  7.  5, 9R   8.  2, 11T    

In Exercises 9 – 22, use the given information to find the exact values of the remaining trigonometric 

functions of  . 

 9.   3
sin

5
   with   in Quadrant II 10.   12

tan
5

   with   in Quadrant III 

 11.   25
csc

24
   with   in Quadrant I 12.  sec 7   with   in Quadrant IV 

 13.   10 91
csc

91
    with   in Quadrant III 14.  cot 23    with   in Quadrant II 

 15.  tan 2    with   in Quadrant IV 16.  sec 4    with   in Quadrant II 

 17.  cot 5   with   in Quandrant III 18.   1
cos

3
   with   in Quadrant I 

 19.  cot 2   with 0
2

   20.  csc 5   with 
2

     

 21.  tan 10   with 
3

2

    22.  sec 2 5   with 
3

2
2

     

23. If   3
sin

5
    and  tan 0  , find  cos   

24. If   2
cos

3
   and  sin 0  , find  cot  . 

25. If  csc 2    and  cos 0  , find  tan  . 



T1-94 Foundations of Trigonometry 

26. In the following diagram, if 
1 3

,
2 2

A
 

   
 

, determine the coordinates of points B  and C . 

Figure Ex1.6. 1 

 

27. In the following diagram, determine the values of x  and y .  What would the values of x  and y  be if 

5r  ? 

Figure Ex1.6. 2 
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CHAPTER 2 
TRIGONOMETRIC GRAPHS AND OTHER 
APPLICATIONS OF RADIAN MEASURE 

 

Figure 2.0. 1 

Chapter Outline 

2.1 Graphs of the Sine and Cosine Functions  

2.2 Graphs of the Other Trigonometric Functions 

2.3 Applications of Radian Measure 

Introduction 

In algebra, we’ve had a great deal of exposure to graphs of linear, quadratic, polynomial, 

rational, and even radical functions.  We saw patterns and generalized about short- and long-term 

behaviors of these functions.  Trigonometric functions may exhibit a type of behavior – that of 

periodicity.  The graphs examined in this section will demonstrate a recurring pattern that relates 

to real-life relationships governed by cyclical behavior.  You may notice some visual similarities 

to functions from your past, but be assured – these functions are unique and are necessary 

components of what comes next in mathematics. 

We begin in Section 2.1 with the introduction of the sine and cosine waves – as functions, as a 

collection of points, and as smooth curves.  This discussion leads to the common designation of 

the sine and cosine as sinusoids.  Moving on to Section 2.2, we proceed to visually define the 

remaining four trigonometric functions and to show how, though not waves, they exhibit related 

repeating patterns. Finally, in Section 2.3, these visualizations are directed to applied concepts of 
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radian measurement.  In addition to allowing us to visualize properties and applications of 

trigonometric functions and radian measure, Chapter 2 provides many of the tools we will need 

in applying identities and formulas, and in solving trigonometric equations, in future chapters. 
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2.1 Graphs of the Sine and Cosine Functions  

Learning Objectives 

 Graph sine and cosine functions and their transformations. 

 Determine whether a sine or cosine function is even or odd. 

 Identify domain, range, period, horizontal (phase) shift, amplitude, and 

vertical shift used in graphing sine and cosine functions. 

 Write an equation of the form    - sin  S x = A ωx B  or 

   - cos  C x = A ωx B  from the graph of a sinusoidal function. 

We now turn our attention to graphing sine and cosine functions in the Cartesian Plane.  We use radians 

exclusively as input values for our graphing of trigonometric functions.  As you will see, radian measure 

combines nicely with arithmetic properties of fractions to simplify graphing these functions.  We note that 

the graphs of both sine and cosine functions are continuous, smooth, and periodic.  Geometrically this 

means the graphs of the sine and cosine functions have no jumps, gaps, holes, vertical asymptotes, 

corners, or cusps, and meander nicely in a repeating fashion. 

Note that  siny x  and  cosy x , both trigonometric functions of x , are defined for all real values of 

x .  This follows from our discussion in Section 1.3 where we found the domain to be  ,   for each 

function.  We also found in Section 1.3 that the range includes all real numbers between −1 and 1, 

inclusive, for both  siny x  and  cosy x . 

Graph of the Sine Function 

To graph the sine and cosine functions in the Cartesian Plane, we use x  as the independent variable and 

y  as the dependent variable.1  We graph  siny x  by making a table using some of the common values 

of x  in the interval  0,2 .  This generates a portion of the sine graph that we call the fundamental 

cycle of  siny x .  So that we do not have to deal with y-values such as 
3

2
, to make graphing easier, 

 
1 The use of x and y in this context is not to be confused with the x- and y-coordinates of points on the Unit Circle, 

which define sine and cosine. 
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we plot points with y-values of 0, 
1

2
 , and 1 .  Recall that  sin 0x   for 0x  ,  , or 2 ;  sin 1x   

for 
2

x


 ; and  sin 1x    for 
3

2
x


 .  In the case where   1

sin
2

x   , the reference angle for x  is 
6


 

and the sign is determined by the quadrant in which x  terminates.  A table of these values follows. 

x   siny x    ,sinx x   x   siny x    ,sinx x  

0 0  0,0   
7

6


 

1

2
  

7 1
,

6 2

  
 

 

6


 

1

2
 

1
,

6 2

 
 
 

  
3

2


 1  

3
, 1

2

  
 

 

2


 1 ,1

2

 
 
 

  
11

6


 

1

2
  

11 1
,

6 2

  
 

 

5

6


 

1

2
 

5 1
,

6 2

 
 
 

   2  0  2 ,0  

  0  ,0      

Noting that  siny x  is defined for all real numbers x , we plot the points   ,sinx x  from the table to 

guide us in sketching the graph of  siny x  on the interval  0,2 .  The tick marks on the x-axis result 

from dividing the interval  0,2  into 12 increments, each representing 
2

12 6

 
  units, as shown below. 

Figure 2.1. 1 

 

After plotting and connecting the points from our table with a smooth, continuous curve, we arrive at the 

following graph.  

 

x

y


































 2π

6

 1π

6

 3π

6

 4π

6

 5π

6

 6π

6

 7π

6

 8π

6

 9π

6

 10π

6

 11π

6

 12π

6
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Figure 2.1. 2 

 

Fundamental Cycle of  siny x  

A few things about the graph above are worth mentioning: 

1. This graph represents only part of the graph of  siny x .  To get the entire graph, imagine 

copying and pasting this graph end to end infinitely in both directions (left and right) along the 

x-axis. 

2. The vertical scale size was chosen for clarity and aesthetics.  Below is a graph that uses the same 

scale size on both axes.  This graph of  siny x  shows several cycles, with the fundamental 

cycle in blue. 

Figure 2.1. 3 

 

 siny x  

The graph of  siny x  is usually described as ‘wavelike’ and, indeed, many of the applications 

involving the sine and cosine functions feature the modeling of wavelike phenomena.  Graphs that follow 

the patterns of sine curves are referred to as sinusoidal. 

Graph of the Cosine Function 

We plot the fundamental cycle of the graph of  cosy x  in a similar way.  To start, we determine the 

x-values in  0,2  that result in y-values of 0, 
1

2
 , and 1 .  We find  cos 0x   for 

2
x


  or 

3

2


; 

x

y
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 cos 1x   for 0x   or 2 ; and  cos 1x    for x  .  When   1
cos

2
x   , the reference angle for x  

is 
3


 and the sign is determined by the quadrant in which x  terminates.  A table of values follows. 

x   cosy x    ,cosx x   x   cosy x    ,cosx x  

0 1  0,1   
4

3


 

1

2
  

4 1
,

3 2

  
 

 

3


 

1

2
 

1
,

3 2

 
 
 

   
3

2


 0 

3
,0

2

 
 
 

 

2


 0 ,0

2

 
 
 

  
5

3


 

1

2
 

5 1
,

3 2

 
 
 

 

2

3


 

1

2
  

2 1
,

3 2

  
 

  2  1  2 ,1  

  1   , 1       

Figure 2.1. 4 

 

Fundamental Cycle of  cosy x  

As with the graph of  siny x , we provide a graph of  cosy x , below, that uses the same scale size 

on both axes.  Again, the fundamental cycle is in blue. 

Figure 2.1. 5 

 

 cosy x  
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It is no accident that the graphs of  siny x  and  cosy x  are so similar.  The graph of  cosy x  is 

a result of the graph of  siny x  being shifted 
2


 units to the left.  Try it!  Thus, the cosine graph is 

also a sinusoidal curve. 

Period of the Sine and Cosine Functions 

Not only can we obtain a graph of the cosine function by shifting the graph of the sine function 
2


 units 

to the left, we can shift the graph of  cosy x  by 2  units to the left and obtain a graph that is 

equivalent to the original graph of  cosy x .  The same can be said for shifts of 4 , 6 , 8 ,   units 

to the left.  We say that the cosine function is periodic, as defined below. 

Definition 2.1. A function f  is said to be periodic if there is a real number p  so that 

   f x p f x   for all real numbers x  in the domain of f .  The smallest such positive number p , if 

it exists, is called the period of f . 

We see by the definition of periodic functions that    cosf x x  is periodic, since 

   cos 2 cosx k x   for any integer k .  To determine the period of    cosf x x , we need to find 

the smallest positive real number p  so that    f x p f x   for all real numbers x  or, said differently, 

the smallest positive real number p  such that    cos cosx p x   for all real numbers x . 

We know that    cos 2 cosx x   for all real numbers x  but the question remains if any smaller real 

number will do the trick.  Suppose 0p   and    cos cosx p x   for all real numbers x .  Then, in 

particular,    cos 0 cos 0p   so that  cos 1p  .  From this we know that p  is a multiple of 2  and, 

since the smallest positive multiple of 2  is 2  itself, we have the result. 

Similarly, we can show  sin x  is periodic with 2  as its period.  Having period 2  essentially means 

that we can completely understand everything about the functions  sin x  and  cos x  by studying one 

interval of length 2 , say  0,2 . 
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Even/Odd Properties of the Sine and Cosine Functions 

While we will explore the even and odd properties of the sine and cosine functions further in Section 3.1, 

for now we demonstrate it graphically.  You may recall that a function is called even if its graph is 

symmetric about the y-axis, and odd if its graph is symmetric about the origin.  You may also recall that, 

for an even function ,f     f x f x  , while for an odd function ,f     f x f x   , for all x -values 

in the domain of f .  Let’s look again at graphs of the sine and cosine functions. 

Figure 2.1. 6 

 

   siny f x x   

The graph of    sinf x x  is symmetric about the origin.  This tells us that the sine function is an odd 

function.  We see that    f x f x   , or equivalently    sin sinx x   . 

Figure 2.1. 7 

 

   cosy f x x   

The graph of    cosf x x  is symmetric about the y-axis.  That is, the cosine function is an even 

function.  Noting that    f x f x  , we have    cos cosx x  .  Following is a summary of properties 

of the sine and cosine functions. 

Properties of the Sine and Cosine Functions 

The function  siny x  

 has domain  ,   

 has range  1,1  

 is odd 

 has period 2  

The function  cosy x  

 has domain  ,   

 has range  1,1  

 is even 

 has period 2  
 

x

y

 

    ,x f x

    ,x f x 

x

y

 
    ,x f x

    ,x f x 
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Properties of Sinusoids 

Now that we know the basic shapes and properties of the graphs of  siny x  and  cosy x , we move 

on to graphing transformations of these functions, referred to as sinusoids.  Sinusoids may be expressed 

in the general form    sinS x A x B     or    cosC x A x B    , with 0  , and are 

characterized by four properties: period, phase shift, amplitude, and vertical shift. 

 We have already discussed period; that is, how long it takes for the sinusoid to complete one 

cycle.  The standard period of both  siny x  and  cosy x  is 2 , but horizontal scalings will 

change the period.  For example, revisiting transformations from a prior algebra course, we find 

the period of  sin 2y x  is  1
2

2
   while the period of sin

2

x
y    

 
, is  2 2 4  . 

Figure 2.1. 8 

 

For a closer look at what is going on, the following points occur at key positions2 in the 

fundamental cycle of each graph; i.e. points where 0y  , 1y   or 1y   . 

Function Points at Key Positions 

 siny x   0,0  ,1
2

 
 
 

  ,0  
3

, 1
2

  
 

  2 ,0   

sin
2

x
y    

 
  0,0   ,1   2 ,0   3 , 1    4 ,0  

 sin 2y x   0,0  ,1
4

 
 
 

 ,0
2

 
 
 

 
3

, 1
4

  
 

  ,0  

In general, the period of    sinS x A x B     or    cosC x A x B    , 0  , is 
2


. 

 
2 These key positions divide one period into four equal pieces, and we will later refer to them as quarter marks. 
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 The phase shift of a sinusoid is the horizontal shift experienced by its fundamental cycle. 

Thinking back to horizontal shifts from algebra, we would expect the graph of the fundamental 

cycle of cos
4

y x
   

 
 to be 

4


 units to the right of the fundamental cycle of  cosy x , and 

that is indeed the case, as shown in the following figure. 

Figure 2.1. 9 

 

For    sinS x A x B     or    cosC x A x B    , the phase shift is determined by the 

value of  .  Specifically, the phase shift is equal to 



.  If   is positive, the graph of the 

function is shifted to the right (in the positive x-direction) by an amount equal to 



.  If   is 

negative, the graph is shifted to the left (in the negative x -direction) by an amount equal to 



. 

Note that a phase (horizontal) shift of 
2


 to the right takes  cosy x  to  siny x , so that 

 cos sin
2

x x
   

 
.  As mentioned earlier, a phase shift of 

2


 to the left takes  siny x  to 

 cosy x .  Thus, by employing the necessary phase shift, the formula for a sinusoid may be 

written as either    sinS x A x B     or    cosC x A x B    . 

 The amplitude of a sinusoid is a measure of how ‘tall’ the wave is, and is half the difference 

between the smallest and largest y-values.  The amplitude of the standard sine and cosine 

functions is 1, but vertical scalings can alter this.  In the following figure, the amplitude of 

 siny x  is 1, the amplitude of  1
sin

2
y x  is 

1

2
, and the amplitude of  2siny x  is 2. 
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Figure 2.1. 10 

 

For a closer look at what is going on, the following points occur at key positions in the 

fundamental cycle of each graph; i.e. points where 0x  , 
2

x


 , x  , 
3

2
x


  and 2x  . 

Function Points at Key Positions 

 siny x   0,0  ,1
2

 
 
 

  ,0  
3

, 1
2

  
 

  2 ,0  

 1
sin

2
y x   0,0  

1
,

2 2

 
 
 

  ,0  
3 1

,
2 2

  
 

  2 ,0  

 2siny x   0,0  ,2
2

 
 
 

  ,0  
3

, 2
2

  
 

  2 ,0  

In general, the amplitude of    sinS x A x B     or    cosC x A x B     is A . 

 The vertical shift of sine and cosine is assumed to be 0, and this corresponds to a vertical 

midline of the x-axis, or 0y  .  For the sinusoids   3
sin

2
y x   and  cos 2y x  , the 

midlines are 
3

2
y    and 2y  , respectively. 

Figure 2.1. 11 

 

Figure 2.1. 12 
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In general, for    sinS x A x B     and    cosC x A x B    , the vertical shift is B , 

and the midline is y B . 

Determining Period, Phase Shift, Amplitude, and Vertical Shift 

For 0  , the functions    sinS x A x B     and    cosC x A x B     have 

 Period: 
2


 

 Phase Shift: 



 

 Amplitude: A  

 Vertical Shift: B  

Before moving on, we note the requirement that 0  .  Should we be given the formula for a sinusoid in 

which the coefficient of x  is negative, we can use even/odd properties of the sine and cosine to rewrite 

the formula before proceeding.  For example, say we are given     2sin 3 1f x x    .  Then 

 

   
  
 

 
since sine is an odd 

1

functio

2sin 3 1

2sin 3 1

2 sin 3 1

s

n

2 in 3

f x x

x

x

x

   

   

     
 

  
  

A similar procedure allows us to rewrite the function    3cos 2g x x     : 

 

   
  

 
 

3cos 2

3cos 2

3 nsince cosi e is an even functiocos 2

3cos 2

n

g x x

x

x

x









   

   

     
  

    
  

We continue with these two functions, in their revised format, in the following two examples. 

Example 2.1.1. Identify the period, phase shift, amplitude, and midline of    2sin 3 1f x x  .  

Solution. We compare the equation    2sin 3 1f x x   to    sinS x A x B    . 

 Since 3  , the period of f is  
2

3


. 

 If we rewrite f as    2sin 3 0 1f x x   , we see the phase shift is 
0

0
3



  . 

 The amplitude of f is 2 2A   . 

 With 1B  , the vertical shift is one unit up.  Thus, the midline is 1y  . 
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We will return to the function from Example 2.1.1 in a bit, as well as the function in the following 

example, to observe these properties graphically.  

Example 2.1.2. Identify the period, phase shift, amplitude, and midline of    3cos 2g x x    . 

Solution. We compare    3cos 2g x x     to    cosC x A x B    . 

 We first observe that 2  , and so the period is 
2

2

  . 

 The phase shift is 



.  If we rewrite    cosC x A x B     as   cosC x A x B



      
  

, 

we can identify the phase shift from the formula.  We find 

 

   3cos 2

3cos 2
2

g x x

x





  

      
  

 

Thus, the phase shift is 
2


 units to the right. 

 Since 3A  , the amplitude is 3 3  .  

 Noting that 0B  , there is no vertical shift, so the midline is 0y  . 

  

The period, amplitude, and midline are illustrated below.  Note that we are assuming 0A .  For 0A , 

each graph would be reflected across its midline. 

Figure 2.1. 13 

 

One Cycle of    sinS x A x B     

Figure 2.1. 14 

 

One Cycle of    cosC x A x B     

amplitude

midline

period

amplitude

midline

period
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Determining an Equation from the Graph of a Sinusoid 

Example 2.1.3. Write an equation for the sinusoid whose graph is shown below. 

Figure 2.1. 15 

 

Solution. We identify A ,  ,  , and B  so that we may fit the data to a function of the form 

   sinS x A x B     or    cosC x A x B    .   

 We start by determining the midline.  High points on the graph occur at 5y   while low points 

occur at 1y   .  The midline is in the center of these two y-values.  Thus, 2y   is the midline 

and the vertical shift is 2B  . 

Figure 2.1. 16 

 

 The amplitude is the distance from the midline to either a maximum point or a minimum point.  

From the graph we see the amplitude is 5 2 3A    .  So, either 3A  or 3A  . 

 For the period, we measure the length of one cycle, from a peak at 
2

x


   to the next peak at 

3

2
x


 , to find that the period is 

2
2




 .  Thus, 1  . 

x

y

     



midline

  1

 1

 5
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 When 0x  , the graph has a point on the midline, as does the graph of  siny x .  This tells us 

that it will be simpler to use the formula    sinS x A x B     with a phase shift of 0.  Thus 

0


 , from which 0  .   

Returning to the amplitude, the shape of our graph indicates a reflection of the sine graph about its 

midline, so we choose 3A  .  The resulting function is    3sin 2S x x   . 

  

Example 2.1.4. Write an equation of the form    cosC x A x B    , and an equation of the 

form    sinS x A x B    , for the sinusoid whose graph is shown below. 

Figure 2.1. 17 

 

Solution. We look for values A ,  ,  , and B  to establish the equations    cosC x A x B     

and    sinS x A x B    . 

 With high points at 
5

2
y   and low points at 

3

2
y   , the midline is 

1 3 5 1

2 2 2 2
y      

 
, so 

1

2
B  . 

Figure 2.1. 18 
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midline

  1

 1
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 The amplitude is 
5 1

2
2 2

A    , so 2A   or 2A   .  Noting that a phase shift will be required, 

we select 2A   and make a note to define the phase shift accordingly.   

 The period is  5 1 6    using the horizontal distance from one maximum point to the next, or 

can be found using the horizontal distance between minimum points, such as 8 2 6  .  Since the 

period is 
2

6



 , we find 
3

  . 

 So far, our equations are   1
2cos

3 2
C x x

     
 

 and   1
2sin

3 2
S x x

     
 

.  We look at 

the graph to determine the correct phase shift.  For the first equation, the cosine graph needs to 

shift one unit to the right, so we have 1


 , from which 

3

   .  For the second equation, 

the sine graph can be shifted 
5

2
 units to the right.  We have 

5

2



 , and so 

5 5 5

2 2 3 6

      . 

Putting everything together, either the function   1
2cos

3 3 2
C x x

     
 

 or the function 

  5 1
2sin

3 6 2
S x x

     
 

 will yield the given graph.   

  

Graphing Sinusoids 

We next look at techniques for graphing sinusoids.  While using transformation techniques you learned in 

a prior algebra course is always a good way to go, we will present two slightly different ways of graphing 

and leave it to the reader to use the one they prefer. In the first method, we will plot points with simple 

sine or cosine values. The second method takes advantage of knowing the period and phase shift of the 

graph. 

Example 2.1.5. Graph one cycle of the function    2sin 3 1f x x  . 

Solution 1. As we did when graphing  siny x , we choose convenient input values to 

   2sin 3 1f x x   that result in  sin 3x  being equal to 0, 
1

2
 , or 1 .  In other words, we set 3x  equal 

to 0, 
6


, 

2


, , 2  as shown in the following table.  From there, we determine the corresponding values 

for x  and y  that will guide our sine curve. 
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3x  
3

3

x
x    2sin 3 1y x     ,x y   3x  

3

3

x
x    2sin 3 1y x     ,x y  

0 0  2 0 1 1    0,1    
7

6


 

7

18


 

1
2 1 0

2
    
 

 
7

,0
18

 
 
 

 

6


 

18


 

1
2 1 2

2
    
 

 , 2
18

 
 
 

  
3

2


 

2


  2 1 1 1     , 1

2

  
 

 

2


 

6


  2 1 1 3   ,3

6

 
 
 

  
11

6


 

11

18


 

1
2 1 0

2
    
 

 
11

,0
18

 
 
 

 

5

6


 

5

18


 

1
2 1 2

2
    
 

 
5

,2
18

 
 
 

  2   
2

3


  2 0 1 1   

2
,1

3

 
 
 

 

  
3


   2 0 1 1   ,1

3

 
 
 

      

Connecting these points with the smooth shape of the sine curve, we have the following: 

Figure 2.1. 19 

 

   2sin 3 1y f x x    

  

Graphing Sinusoidal Functions by Plotting Points 

 To graph    sinS x A x B     or    cosC x A x B    , 

1. Choose values for the argument, x  , that give sine or cosine values of 0, 
1

2
 , 1 . 

 For the sine function, use 
5 7 3 11

0, , , , , , , , 2
6 2 6 6 2 6

x
          . 

 For the cosine function, use 
2 4 3 5

0, , , , , , , , 2
3 2 3 3 2 3

x
          . 

2. Find the corresponding x- and y-values. 

3. Plot the points, connect them, and extend in the shape of a sinusoidal curve. 
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Before proceeding with the second solution technique, note that the period of the sine can be divided into 

quarter periods of length 
2

4 2

 
 .  Using quarter marks (vertical dashed lines) to divide the graph of 

the fundamental cycle of  siny x   into these four quarter periods, we find the following: 

 Quarter Period 1: The graph starts on the midline, 0y  , and ends at a maximum point. 

 Quarter Period 2: The graph starts at a maximum point and ends on the midline. 

 Quarter Period 3: The graph starts on the midline and ends at a minimum point. 

 Quarter Period 4: The graph starts at a minimum point and ends on the midline. 

Figure 2.1. 20 

 

 siny x  

Solution 2. We first divide the period of    2sin 3 1f x x   into quarter periods.  In Example 2.1.1, 

we found that the period of    2sin 3 1f x x   is 
2

3


, so the length of these quarter periods is 

1 2

4 3 6

 
  .  Starting at 0x  , since there is no phase shift, we sketch dashed lines for quarter marks at 

0x  , 0
6 6

x
 

   , 
2

6 6 6
x

  
   , 

2 3

6 6 6
x

  
   , and 

3 4

6 6 6
x

  
   .  We found that the 

midline is 1y   in Example 2.1.1, so we additionally add the dashed line 1y  .  We sketch the graph, 

starting on the midline at the first quarter mark, mimicking the behavior/shape of the graph of  siny x , 

as we move from left to right through corresponding quarter periods.  Noting that the amplitude is 2, the 

maximum points will be 2 units above the midline and the minimum points will be 2 units below the 

midline. 

x

y





 

2

  3

2


   2
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Figure 2.1. 21 

 

   2sin 3 1y f x x    

  

In Solution 2, while the amplitude is 2A  , it is important to confirm that 2A   .  Had it been the case 

that 2A   , the resulting graph would have been a reflection of our current graph across its midline.  

And what if our function had been a transformation of  cosy x  rather than  siny x ?  Since the 

period of  cosy x  is also 2 ,  quarter marks would occur at the same locations as those of  siny x . 

Figure 2.1. 22 

 

 cosy x  

With its midline of 0y  , the graph of  cosy x  behaves as follows: 

 Quarter Period 1: The graph starts at a maximum point and ends on the midline. 

 Quarter Period 2: The graph starts at the midline and ends at a minimum point. 

 Quarter Period 3: The graph starts at a minimum point and ends on the midline. 

 Quarter Period 4: The graph starts at the midline and ends at a maximum point. 

x

y





















midline

x

y
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A summary of the technique from Solution 2, a ‘shortcut’ method for applying transformations, follows. 

Graphing Sinusoidal Functions by Quarter Marks 

To graph    sinS x A x B     or    cosC x A x B    , 0  , determine the period, phase 

shift, amplitude, and vertical shift (midline).  Then, 

 Divide the period by 4, resulting in the width of each quarter period. 

 Sketch quarter marks with dashed vertical lines.  The first quarter mark is located left or right 

from 0x   by the amount of the phase shift.  The remaining four quarter marks are determined 

by consecutively moving right by the width of a quarter period. 

 Sketch the midline with a dashed horizontal line, and choose the graph that matches your 

function from the following models. 

Figure 2.1. 23 

 

 siny A x B    , 0A  

Figure 2.1. 24 

 

 cosy A x B    , 0A  

Figure 2.1. 25 

 

 siny A x B    , 0A  

Figure 2.1. 26 

 

 cosy A x B    , 0A  

 Follow your model in marking points located at the intersections of the midline with quarter 

marks.  Add the points that are located a distance of A  above or below the midline. 

 Connect these five points and extend in the shape of a sinusoidal curve.  

 Midline

 

A

 

A

 Midline

 

A

 

A  

A

 Midline

 

A

 

A

 Midline

 

A

 

A

 

A
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Example 2.1.6. Graph one cycle of the function    3cos 2g x x    . 

Solution. We apply the technique of graphing by quarter marks.  In Example 2.1.2, we found that the 

period of    3cos 2g x x     is  , the phase shift is 
2


 units to the right, the amplitude is 3 and the 

midline is 0y  . 

First of all, a quarter period will have length 
1

4 4

  .  With the phase shift being 
2


 units to the right, 

the first quarter mark appears at 
2

x


  with subsequent quarter marks at 
3

2 4 4
x

  
   , 

3

4 4
x

     , 
5

4 4
x

    , and 
5 3

4 4 2
x

  
   .  We use dashed lines to indicate quarter marks 

and keep in mind that the midline is 0y  .  Since 3A  , the maximum points will be 3 units above the 

midline and the minimum points will be 3 units below the midline.  With 3A  , the behavior of the 

graph in each quarter period will mimic that of  cosy A x B     with 0A . 

Figure 2.1. 27 

 

   3cos 2y g x x      

  

 

 

 

x

y
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2.1 Exercises 

 1. Why are the sine and cosine functions called periodic functions? 

 2. How does the graph of  siny x  compare with the graph of  cosy x ?  Explain how you could 

horizontally translate the graph of  siny x  to obtain the graph of  cosy x . 

 3. For the function    cosf x A x B    , what constants affect the range and how do they affect 

the range? 

In Exercises 4 – 15, graph one cycle of the given function.  State the period of the function. 

 4.  3siny x  5.  sin 3y x  6.  2cosy x   

 7.  1
cos

2
y x  8. 

1
sin

2
y x   

 
 9.  cos 3y x    

 10. cos
2

y x
   

 
 11. sin

3
y x

    
 

 12. sin 2
2

y x
       

 

 13. 
1

cos
3 3

y x
    

 
 14.  cos 3 4y x   15. sin 2

4
y x

    
 

 

In Exercises 16 – 27, graph two full cycles of each function.  State the domain, range, and period.  If 

applicable, describe the horizontal (phase) shift and vertical shift of the function. 

 16.  2siny x  17.  2
cos

3
y x  18.  3siny x   

 19.  sin 4y x  20.  siny x  21.  cos 2y x  

 22. cos
2

y x
   
 

 23. cos 2
2

y x
   
 

 24. 
6

3cos
5

y x   
 

 

 25. sin 1
2

y x
    

 
 26.  2sin 3y x    27.  5sin 2y x   

In Exercises 28 – 39, state the period, phase shift, amplitude, and vertical shift of the given function.  

Graph at least one cycle of the function. 

 28.  3siny x  29.  sin 3y x  30.  2cosy x   
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 31. cos
2

y x
   

 
 32. sin

3
y x

    
 

 33.  sin 2y x    

 34. 
1 1

cos
3 2 3

y x
    

 
 35.  cos 3 2 4y x     36. sin 2

4
y x

     
 

 

 37. 
2

cos 4 1
3 2

y x
     

 
 38. 

3 1
cos 2

2 3 2
y x

     
 

 39.  4sin 2y x     

40. Write an equation of the form    sinS x A x B     for the sine function whose graph is shown 

below. 

Figure Ex2.1. 1 

 

41. Write an equation of the form    cosC x A x B     for the cosine function whose graph is 

shown below. 

Figure Ex2.1. 2 
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42. Write an equation of the form    cosC x A x B     for the cosine function whose graph is 

shown below. 

Figure Ex2.1. 3 

 

43. Write an equation of the form    sinS x A x B     for the sine function whose graph is shown 

below. 

Figure Ex2.1. 4 

 

44. Write an equation of the form    sinS x A x B     for the sine function whose graph is shown 

below. 

Figure Ex2.1. 5 

 

x

y
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45. Write an equation of the form    cosC x A x B     for the cosine function whose graph is 

shown below. 

Figure Ex2.1. 6 

 

46. Write an equation of the form    sinS x A x B     for the sine function whose graph is shown 

below. 

Figure Ex2.1. 7 

 

47. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meter above the ground.  

The six o’clock position on the Ferris wheel is level with the loading platform.  The wheel completes 

1 full revolution in 10 minutes.  The function  h t  gives a person’s height in meters above the 

ground t  minutes after the wheel begins to turn. 

a. Find the period, amplitude, and vertical shift of  h t . 

b. Find a formula for the height function  h t . 

c. How high off the ground is a person after 5 minutes? 
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In Exercises 48 – 49, verify the identity by using technology to graph the right and left sides. 

 48.    2 2sin cos 1x x   49.  cos sin
2

x x
   
 

 

In Exercises 50 – 53, graph the function with the help of technology and discuss the results with your 

classmates. 

 50.      cos 3 sinf x x x  .  Is this function periodic?  If so, what is the period? 

 51.    sin x
f x

x
 .  What appears to be the horizontal asymptote of the graph? 

 52.    sinf x x x .  Graph y x   on the same set of axes and describe the behavior of f . 

 53.   1
sinf x

x
   
 

.  What’s happening as 0x ? 
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2.2 Graphs of the Other Trigonometric Functions  

Learning Objectives 

 Graph tangent, cotangent, secant, and cosecant functions and their 

transformations. 

 Identify vertical asymptotes, period, domain, and range of these functions. 

 Determine whether each function is even or odd. 

Having graphed the sine and cosine functions, we move on to the remaining four trigonometric functions, 

starting with the tangent and cotangent.  Graphs of the tangent and cotangent functions will be a bit of a 

challenge with their shorter period and vertical asymptotes.  Then, moving on to secant and cosecant 

functions, we find these graphs follow nicely from graphs of the sine and cosine.  

Graph of the Tangent Function 

We recall that    
 

sin
tan

cos

x
x

x
  and construct a table of values for the tangent function over the interval 

 0,2 .  To conserve space, we have not included columns for sine and cosine values, although that is 

common practice. 

x   tan x    , tanx x   x   tan x    , tanx x   x   tan x    , tanx x  

0 0  0,0   
3

4


 1  

3
, 1

4

  
 

  
5

3


 3  

5
, 3

3

  
 

 

4


  1 ,1

4

 
 
 

    0  ,0   
7

4


 1  

7
, 1

4

  
 

 

3


 3  , 3

3

 
 
 

  
5

4


 1 

5
,1

4

 
 
 

  2  0  2 ,0  

2


 Not 

defined 
  

4

3


 3  

4
, 3

3

 
 
 

     

2

3


 3  

2
, 3

3

  
 

  
3

2


 Not 

defined 
     

To determine the behavior of the graph of  tany x  when x  is close to 
2


 or 

3

2


, we will look at 

some values for  tan x  on both sides of 
2

x


  and on both sides of 
3

2
x


 . 
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 Following are some values for  tan x  when x  is less than, but close to, 
2


.  With 1.571

2


 , 

we include approximate values of the tangent for the indicated radian measures of x .  Note that 

these values of  tan x  are positive, getting larger and larger as x  approaches 
2


 from the left.  

The result is a vertical asymptote at 
2

x


 . 

x  1.5 1.55 1.56 1.57   1.571
2


  

 tan x  14 48 93 1256   undefined 

Mathematical notation: As 
2

x
 

 ,  tan x  . 

 When x  is greater than, but close to, 
2


, as x  approaches 

2


 from the right, the values of 

 tan x  get smaller and smaller, approaching negative infinity. 

x  1.7 1.6 1.59 1.58   1.571
2


  

 tan x  −8 −34 −52 −109   undefined 

Mathematical notation: As 
2

x
 

 ,  tan x  . 

 Noting that 
3

4.712
2


 , we look at approximate values for  tan x  when x  is close to 

3

2


. 

x  4.6 4.65 4.7 4.71   3
4.712

2


  

 tan x  9 16 81 419   undefined 

As 
3

2
x

 

 ,  tan x   

x   4.8 4.75 4.73 4.72   3
4.712

2


  

 tan x  −11 −27 −57 −131   undefined 

As 
3

2
x

 

 ,  tan x   
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Thus, we have vertical asymptotes at 
2

x


  and at 
3

2
x


 .  We also know something about the behavior 

of the graph as it approaches these vertical asymptotes from each side.  Plotting all of the information we 

have gathered about the graph of  tany x  over the interval  0,2 , we have the following: 

Figure 2.2. 1 

 

The graph of  tany x  over  0,2  

Below, we extend the graph of  tany x  by ‘copy and paste’. 

Figure 2.2. 2 

 

The graph of  tany x  with fundamental cycle highlighted in blue 

From the graph, it appears that the tangent function is periodic, with period  .  This is, in fact, the case as 

we will prove in Section 3.1, following the introduction of the sum identity for tangent.  We take as our 

fundamental cycle for  tany x  the interval ,
2 2

   
 

. 

From the graph, we see that the domain of the tangent function,  tany x , includes all real numbers x  

except for 
3 5

, , ,
2 2 2

x
  

     .  These are the x-values for which  cos 0x   and, subsequently, are 

x




 



















y

x

y
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the only real numbers for which  tany x  is undefined.  Thus, the domain of  tany x  is all real 

numbers x , excluding 
2

x k
    for any integer k .  The range of  tany x , as observed from the 

graph, includes all real numbers. 

The graph of  tany x  suggests symmetry through the origin.  Indeed,  tany x  is odd since 

 siny x  is odd and  cosy x  is even, as shown below. 

 

   
 
 
 
 

sin
tan

cos

sin

cos

tan

x
x

x

x

x

x


 






 

  

Graph of the Cotangent Function 

It should be no surprise that the graph of the cotangent function behaves similarly to the graph of the 

tangent function.  Noting that    
 

cos
cot

sin

x
x

x
 , we construct a table of values for  coty x  over the 

interval  0,2 . 

x   cot x    ,cotx x   x   cot x    ,cotx x   x   cot x    ,cotx x  

0 Not 
defined 

  
5

6


 3  

5
, 3

6

  
 

  
7

4


 −1 

7
, 1

4

  
 

 

6


 3  , 3

6

 
 
 

    Not 
defined 

  
11

6


 3  

11
, 3

6

  
 

 

4


 1 ,1

4

 
 
 

  
7

6


 3  

7
, 3

6

 
 
 

  2  Not 
defined 

 

2


 0 ,0

2

 
 
 

  
5

4


 1 

5
,1

4

 
 
 

     

3

4


 −1 

3
, 1

4

  
 

  
3

2


 0 

3
,0

2

 
 
 

     

Asymptotes occur at the x-values where  cot x  is not defined (when  sin 0x  ) resulting in the 

following graph. 
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Figure 2.2. 3 

 

The graph of  coty x  over  0,2  

It clearly appears that the period of the cotangent function is  , which is indeed the case and will be 

revisited in Section 3.1.  We take as our fundamental cycle the interval  0, .  A more complete graph 

of  coty x  follows, with the fundamental cycle highlighted. 

Figure 2.2. 4 

 

The graph of  coty x  with fundamental cycle highlighted in blue 

We see from the graph that the apparent domain of the cotangent function is all real numbers x  except for 

0, , 2 ,x      .  These are the values where  sin 0x   and are the only real numbers for which 

 coty x  is not defined.  Thus, the domain of  coty x  is all real numbers x , excluding x k , for 

any integer k .  The range of  coty x  includes all real numbers. 

As with the tangent, the graph of  coty x  suggests symmetry through the origin.  An argument similar 

to that used for the tangent verifies that this is the case and that the cotangent is an odd function.  Try it! 

x




 



















y

x

y
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On the intervals between their vertical asymptotes, both  tany x  and  coty x  are continuous and 

smooth.  In other words, they are continuous and smooth on their domains.  Other properties of the 

tangent and cotangent functions are summarized below.  

Properties of the Tangent and Cotangent Functions 

The function  tany x  

 has domain of all real numbers except  

2
x k

    for integers k  

 has range  ,   

 is odd 

 has period   

The function  coty x  

 has domain of all real numbers except 

x k  for integers k . 

 has range  ,   

 is odd 

 has period   

 

Graphing Transformations of the Tangent and Cotangent Functions 

Graphing transformations of the tangent and cotangent functions,    tanJ x A x B     and 

   cotK x A x B    , 0  , is similar to graphing transformations of the sine and cosine.  We can 

plot points or use quarter marks.  Examples of each of these methods will follow. 

Graphing Tangent and Cotangent Functions by Plotting Points 

To graph    tanJ x A x B     or    cotK x A x B    , 

1. Draw vertical asymptotes as dashed lines at locations where the function is not defined, after 

determining the equations of the vertical asymptotes as follows. 

 For the tangent function, solve 
2

x
    . 

 For the cotangent function, solve 0x    and x    . 

 
2. Choose values for the argument, x  , that result in tangent or cotangent values of 0 and 1 . 

 For the tangent function, let , 0,
4 4

x
     . 

 For the cotangent function, let 
3

, ,
4 2 4

x
     . 

3. Find the corresponding x- and y-values. 

4. Plot these points, and connect them with a smooth curve that approaches the vertical 

asymptotes.  Copy to the left and right for showing multiple periods of the graph. 
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Example 2.2.1. Draw the graph of the function  tan 2y x   . 

Solution. To determine the vertical asymptotes, we find the x-values for which  tan 2x   is not 

defined.  These values occur when 2x   is equal to 
2


 .  Additionally, we identify points on the graph 

whose x-values result in  tan 2y x    being zero or 1 .  These points occur when 2x   is equal to 

zero or 
4


 . 

2x   x   tan 2y x    Asymptote or Point on Graph 

2


  

4


 Not Defined Vertical Asymptote: 

4
x


  

4


  

3

8


 1  Point: 

3
, 1

8

  
 

 

0 
2


 0 Point: ,0

2

 
 
 

 

4


 

5

8


 1 Point: 

5
,1

8

 
 
 

 

2


 

3

4


 Not Defined Vertical Asymptote: 

3

4
x


  

We draw the vertical asymptotes 
4

x


  and 
3

4
x


  as dashed lines.  Then, after plotting the points 

3
, 1

8

  
 

, ,0
2

 
 
 

, and 
5

,1
8

 
 
 

, we connect them with a smooth curve and extend the curve so that it 

approaches the vertical asymptotes.  To show more than one period of the graph, we ‘copy and paste’ to 

the left and right. 

Figure 2.2. 5 
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To graph    tanJ x A x B     or    cotK x A x B     using quarter marks, keep in mind that 

some properties of the tangent and cotangent functions differ from those of the sine and cosine functions. 

 The period of both  tany x  and  coty x  is  , so the period of transformations will be 



. 

 Since the fundamental cycle of the tangent starts at 
2


  instead of 0, the horizontal shift of 




 is 

applied after determining the period.  (‘Phase shift’ is unique to sine and cosine.) 

 The vertical scaling is A , but tangent and cotangent do not have amplitude since they do not 

possess the wavelike characteristics of the sine and cosine. 

 The vertical shift of B  is not referred to as the ‘midline’. 

Graphing Tangent and Cotangent Functions by Quarter Marks 

To graph    tanJ x A x B     or    cotK x A x B    , 0  , determine the period, 

horizontal shift, vertical scaling, and vertical shift. 

 Determine the location of the first quarter mark: 

o For  y J x , start at a distance of 
period

2
 to the left of 0x   .  Then move left or 

right by the amount of the phase shift. 

o For  y K x , start at 0x   and move left or right by the amount of the phase shift.   

 Divide the period by 4, resulting in the width of each quarter period.  From the first quarter 

mark, move right by that width, consecutively, to identify the locations of the remaining four 

quarter marks.  Sketch vertical asymptotes at the first and last quarter marks. 

 Sketch y B  with a dashed horizontal line, and choose the graph that matches your function 

from the models that follow these guidelines. 

 Mark the point where the third quarter mark intersects the line y B .  Follow your model in 

marking points at the second and fourth quarter marks, A  units above or below y B . 

 Connect these three points with a curve in the shape of your model, approaching the vertical 

asymptotes.  
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Figure 2.2. 6 

 

 tan , 0y A x B A      or 

 cot , 0y A x B A      

Figure 2.2. 7 

 

 cot , 0y A x B A      or 

 tan , 0y A x B A      
 

Example 2.2.2. Graph one cycle of the function   3 tan
2

x
f x     

 
. 

Solution. Before identifying the period, horizontal shift, vertical scaling, and vertical shift, we rewrite 

the function   3 tan
2

x
f x     

 
 in the format  tany A x B     as follows: 

   1
tan 0 3

2
f x x     

 
 

With 1A   , 
1

2
  , 0   and 3B  , we have 

Period is 
 

2
1 2

  

  . Vertical scaling is 1 1A    . 

Horizontal shift is 
 

0
0

1 2



  . Vertical shift is 3B  . 

We proceed with graphing by quarter marks. 

 Dividing the period of 2  by 2, we have a starting point   units to the left of 0x  .  Since the 

horizontal shift is 0, we place the first quarter mark at x   . 

 From the period of 2 , the width of each quarter period is 
2

4 2

 
 , resulting in quarter marks at 

, , 0,
2 2

x
     and  . 

  =y B 

A

 

A   =y B
 

A

 

A
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 Since the vertical shift is 3, we include the line 3y   in a sketch with the quarter marks, the first 

and last of which are vertical asymptotes.  We note that our function matches the model 

 tany A x B    , with 0A . 

Figure 2.2. 8 

 

Figure 2.2. 9 

 

Graph shows quarter marks, vertical 

asymptotes and line for vertical shift 
 tan , 0y A x B A      

 We mark the point located at the intersection of the lines 3y   and 0x  , the third quarter 

mark.  Following the model, at the second quarter mark we plot a point 1A   unit above the line 

3y  .  The third point is 1 unit below the line 3y   at the fourth quarter mark. 

 Connecting the points and approaching the vertical asymptotes, we have the following graph. 

Figure 2.2. 10 

 

  3 tan
2

x
y f x      

 
 

Figure 2.2. 11 

 

(without construction lines) 

  

Example 2.2.3. Graph one cycle of the function   3cot 1
4 4

g x x
     
 

. 

x

y

 



















  = 3y

  =y B
 

A

 

A

x

y

 













  = 3y
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Solution. We first rewrite the function   3cot 1
4 4

g x x
     
 

 in a format that is easier to work 

with.  Noting that  cot coty A x B A x B
  


           
, we go a step further in this example to 

simplify identifying the horizontal shift. 

 

 

 

  

3cot 1
4 4

3cot 1 1
4

3cot 1 1
4

g x x

x

x

 





    
 
     
      

 

We see that 3A  , 
4

  , 1


   and 1B  , from which 

Period is 
 

4
4

 
 
  . Vertical scaling is 3 3A   . 

Horizontal shift is 1


  . Vertical shift is 1B  . 

As in the previous example, we will graph using quarter marks. 

 We begin at 0x  , the starting point for quarter marks in graphing  coty x .  Applying the 

horizontal shift of 1  takes us to the left by one unit for a first quarter mark at 1x   . 

 Dividing the period of 4 into four equal quarter periods of width 1 unit, quarter marks can be 

placed at 1, 0, 1, 2,x    and 3.  The first and fifth quarter marks are locations of asymptotes. 

 The vertical shift is 1, so we add the line 1y   to our graph.  With 3A  , we select 

 coty A x B    , 0A  , as our model. 

Figure 2.2. 12 

 

Figure 2.2. 13 

 

Graph shows quarter marks, vertical 

asymptotes and line for vertical shift 
 cot , 0y A x B A      

x

y

   











  = 1y   =y B
 

A

 

A
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 At the third quarter mark, we plot the point  1, 1 .  At the second quarter mark, with 3A  , we 

plot a point 3 units above the line 1y  , at  0,4 .  At the fourth quarter mark we drop 3 units 

below the line 1y   to plot the point  2, 2 . 

 Applying the graphical behavior of the cotangent function, we have the following graph. 

Figure 2.2. 14 

 

  3cot 1
4 4

y g x x
      
 

 

Figure 2.2. 15 

 

The final graph 

  

Before moving on, we note the requirement that 0  .  Should we be given the formula for a tangent or 

cotangent function in which the coefficient of x  is negative, we can use the fact that these functions are 

odd to rewrite the formula before proceeding.  For example, say we are given    tan 3 1f x x   .  Then 

        tan 3 1 tan 3 1 tan 3 1f x x x x         . 

Graph of the Secant Function 

We use values of the cosine function in its fundamental cycle,  0,2 , to determine values for the secant.  

The domain of the secant function excludes all odd multiples of 
2


 since these are the values of x  for 

which  cos 0x  .  In our table based on the fundamental cycle of  cosy x , the secant is undefined at 

2
x


  and 

3

2
x


 .  These are both x-values at which vertical asymptotes occur. 

x

y

   











  = 1y
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x   cos x     
1

sec
cos

x
x

    ,secx x   x   cos x     
1

sec
cos

x
x

    ,secx x  

0 1 1  0,1   5

4


 

1

2
  2  5

, 2
4

  
 

 

4


 

1

2
 2  , 2

4

 
 
 

  4

3


 

1

2
  2  4

, 2
3

  
 

 

3


 

1

2
 2 ,2

3

 
 
 

  3

2


 0 Not defined  

2


 0 Not defined   5

3


 

1

2
 2 5

,2
3

 
 
 

 

2

3


 

1

2
  2  2

, 2
3

  
 

  7

4


 

1

2
 2  7

, 2
4

 
 
 

 

3

4


 

1

2
  2  3

, 2
4

  
 

  2  1 1  2 ,1  

  1  1   , 1        

To determine the behavior of the graph of  secy x  when x  is close to the vertical asymptotes 
2

x


  

and 
3

2
x


 , we look at some values for  sec x  on both sides of 

2
x


  and on both sides of 

3

2
x


 . 

 Following are some values for  sec x  when x  is less than, but close to, 
2


.  We note that 

1.571
2


  and include approximate values of the secant for the indicated radian measures of x . 

x  1.5 1.55 1.56 1.57   1.571
2


  

   
1

sec
cos

x
x

  14 48 93 1256   undefined 

Values of  sec x are positive, getting larger and larger as x approaches 
2


 from the left: 

  As , sec
2

x x
 

   

 We next look at approximate values of  sec x  when x  is greater than, but close to, 
2


. 

x  1.7 1.6 1.59 1.58   1.571
2


  

   
1

sec
cos

x
x

  −8 −34 −52 −109   undefined 
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As x  approaches 
2


from the right, the values of  sec x  approach negative infinity: 

  As , sec
2

x x
 

   

 Using a similar analysis, which we leave to the reader, 

 
 

 

3
As , sec

2

3
As , sec

2

x x

x x









 

 

 

Plotting points and asymptotes, with smooth curves that echo the behavior noted above, we have the 

following graph of  secy x  over the interval  0,2 :  

Figure 2.2. 16 

 

The graph of  secy x over  0,2  

Next, we use ‘copy and paste’ to extend this graph horizontally.  Notice the light ‘penciled-in’ sketch of 

 cosy x  on both graphs.  We will find that the graph of the cosine is a handy tool in sketching the 

secant.  At each x-value for which  cos 0x  , the graph of  secy x  has a vertical asymptote.  The 

points where  cos 1x    are also points where  sec 1x   .  By plotting only the asymptotes and the 

points where  sec 1x   , a rough graph of  secy x  can quickly be drawn by sketching the ‘U’ shapes 

of the secant function. 
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Figure 2.2. 17 

 

The graph of  secy x  with fundamental cycle highlighted in blue 

Since  cos x is periodic with period 2 , it follows that  sec x is also periodic with a period of 2 .3  

Due to the close relationship between the cosine and secant, the fundamental cycle of the secant function 

is the same as that of the cosine function.  We previously noted that the domain of the secant function 

excludes all odd multiples of 
2


.  The range of  secy x , as observed graphically, includes all real 

numbers y  such that 1y    or 1y  , or equivalently 1y  .  By thinking of the secant function as being 

the reciprocal of the cosine function, a similar result can be obtained algebraically. 

Graph of the Cosecant Function 

As one would expect, to graph  cscy x  we begin with  siny x  and take reciprocals of the 

corresponding y-values.  Here, we encounter issues at 0x  , x   and 2x  .  These are locations of 

vertical asymptotes.  Following is a table of values for the cosecant.  We leave the analysis of the graph’s 

behavior near its asymptotes to the reader, and proceed with graphing the fundamental cycle of 

 cscy x , followed by an extended graph of  cscy x .  A light ‘penciled-in’ sketch of  siny x  is 

included for reference. 

 
3 Provided  sec   and  sec   are defined,    sec sec   if and only if    cos cos  .  Hence,  sec x

inherits its period from  cos x . 
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Figure 2.2. 18 

 

The graph of  cscy x  over  0,2  
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Figure 2.2. 19 

 

The graph of  cscy x  with fundamental cycle highlighted in blue 

Since  siny x  and  cosy x  are horizontal shifts of each other, so too are  cscy x  and 

 secy x .  As with the tangent and cotangent functions, both  secy x  and  cscy x  are 

continuous and smooth on their domains.  Other properties of the secant and cosecant functions are 

summarized below.  Note that all of these properties are direct results of them being reciprocals of the 

cosine and sine functions, respectively. 

Properties of the Secant and Cosecant Functions 

The function  secy x  

 has domain of all real numbers except 

2
x k

    for integers k  

 has range    , 1 1,    

 is even 

 has period 2  

The function  cscy x  

 has domain of all real numbers except 

x k  for integers k  

 has range    , 1 1,    

 is odd 

 has period 2  

 

Graphs of Transformations of the Secant and Cosecant Functions 

To graph the transformation of a secant or cosecant function,    secF x A x B     or 

   cscG x A x B    , 0  , we use a corresponding cosine or sine function, respectively, as a 

guide.  We may graph the cosine or sine function by plotting points or using quarter marks.  Either way, 

the following describes the technique of using graphs of a cosine or sine function to graph a secant or 

cosecant function, respectively. 
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Graphing Secant and Cosecant Functions by Guide Functions 

To graph    secF x A x B    , 0  , begin by graphing  cosy A x B     as a guide.  To 

graph    cscG x A x B    , 0  , begin by graphing  siny A x B     as a guide. 

 Sketch vertical asymptotes at points where  cos x   or  sin x   is zero, or where the 

graph  of the guide function crosses the midline. 

Figure 2.2. 20 

 

 cosy A x B     

Figure 2.2. 21 

 

 siny A x B     

 Plot a point at any location where the guide graph has a maximum or minimum value. 

Figure 2.2. 22 

 

Figure 2.2. 23 

 

 Maximum values of the guide function are low points above the midline on the secant/cosecant 

curve.  Minimum values of the guide function are high points below the midline on the 

secant/cosecant curve.  Passing through the points plotted in the previous step, sketch 

U-shaped curves that approach the corresponding vertical asymptotes. 

Figure 2.2. 24 

 

Figure 2.2. 25 

 
 

 Midline  Midline

 Midline  Midline
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In the next two examples, we use graphs of the cosine and sine to sketch transformations of the secant and 

cosecant functions, respectively. 

Example 2.2.4. Graph one cycle of the function    1 2sec 2f x x  . 

Solution. Before proceeding, we rewrite    1 2sec 2f x x   in the format    2sec 2 0 1f x x    .  

This gives us the guide function  2cos 2 0 1y x    , which we will graph using quarter marks. 

The period of  2cos 2 0 1y x     is 
2

2

  , the amplitude is 2 2  , and the midline is 1y  .  The 

phase shift is 0, so with the width of each quarter period being 
4


, we plot quarter marks at 

3
0, , , ,

4 2 4
x

  
  and  .  Using the model  cosy A x B    , 0A  , we get the following graph. 

Figure 2.2. 26 

 

 2cos 2 0 1y x     

Now, we use this graph of  2cos 2 0 1y x     as a guide for sketching    2sec 2 0 1f x x     by 

1. Drawing vertical asymptotes at 
4

x


  and 
3

4
x


 , the x-values at which the guide function 

intersects the midline.  (Note that for these two x-values,  cos 2 0x  , resulting in  sec 2x  being 

undefined.) 

2. Plotting points at  0, 1 , ,3
2

 
 
 

, and  , 1  , locations where the guide function has maximum 

and minimum values. 

3. Sketching U-shaped curves through points, approaching asymptotes. 
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Figure 2.2. 27 

 
   1 2sec 2y f x x    with  

guide function  2cos 2 0 1y x     

Figure 2.2. 28 

 
One cycle of    1 2sec 2y f x x    

  

For an explanation of why the above technique works, consider    secF x A x B     with 0A  , 

noting that    cos

A
f x B

x 
 


. 

 Since    
 
cos

cos

A B x
f x

x

 
 

 



,  f x  is undefined, or has vertical asymptotes, when the 

denominator  cos 0x   .  This occurs when  cosy A x B B      or when the graph 

of  cosy A x B     crosses its midline. 

 If the fraction 
 cos

A

x 
 is positive, its minimum value occurs when  cos 1x   , so the 

minimum value of  f x , above the midline, is where  cosy A x B A B       attains its 

maximum value. 

 If the fraction 
 cos

A

x 
 is negative, its maximum value occurs when  cos 1x    , so the 

maximum value of  f x , below the midline, is where  cosy A x B A B        attains its 

minimum value. 

Example 2.2.5. Graph one cycle of the function    csc 5

3

x
g x

  
 . 

Solution. We begin by rewriting the function g  in the format  cscy A x B    . 
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We proceed to graph      
1 5

csc
3 3

g x x      by first graphing    
1 5

sin
3 3

y x     .  We find 

the period of    
1 5

sin
3 3

y x      is 
2

2



 , the amplitude is 
1 1

3 3
  , and the midline is 

5

3
y   .  

Since  1x x     , the phase shift is 1.  The width of each quarter period is 
2 1

4 2
 .  Quarter marks 

occur at 
3 5

1, , 2, ,
2 2

x   and 3.  Using the model  siny A x B    , 0A  , we get the following 

graph. 

Figure 2.2. 29 

 

   
1 5

sin
3 3

y x      

Using the transformed sine graph as a guide in sketching one cycle of      
1 5

csc
3 3

g x x     , we 

plot vertical asymptotes at points of intersection with the midline.  We add points at maximum and 

minimum values.  Finally, U-shaped curves pass through points and approach asymptotes. 
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Figure 2.2. 30 

 

   csc 5
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   with  
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Figure 2.2. 31 

 

One cycle of    csc 5

3

x
y g x

  
   

  

In real world applications, sine and cosine functions are often used in place of cosecant and secant 

functions, respectively. 
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2.2 Exercises 

In Exercises 1 – 12, graph one cycle of the given function.  State the period of the function. 

 1. tan
3

y x
   

 
 2. 

1
2 tan 3

4
y x   

 
 3.  1

tan 2 1
3

y x      

 4. cot
6

y x
   

 
 5. 

1
11cot

5
y x    

 
 6. 

1 3
cot 2 1

3 2
y x

    
 

 

 7. sec
2

y x
   

 
 8. csc

3
y x

    
 

 9. 
1 1

sec
3 2 3

y x
    

 
 

 10.  csc 2y x    11.  sec 3 2 4y x     12. csc 2
4

y x
     

 
 

In Exercises 13 – 33, graph two full cycles of each function.  State the period and asymptotes.  If 

applicable, describe the horizontal shift and vertical shift of the function. 

 13.  tany x  14.  coty x  15.  2 tan 4 3y x    

 16. tan
2

y x
   
 

 17. cot
2

y x
   

 
 18.  4coty x  

 19. tan
4

y x
   

 
 20.  tany x       21.  3cot 2y x   

 22.  secy x  23.  cscy x  24.  2sec 1
4

y x
   
 

 

 25. 6csc
3

y x
    
 

 26.  2cscy x  27.  1
csc

4
y x   

 28.  4sec 3y x  29.  7sec 5y x  30.  3
csc

2
y x  

 31. 2csc 1
4

y x
    

 
 32. sec 2

3
y x

     
 

 33. 
7

csc
5 4

y x
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In Exercises 34 – 39, find an equation for the graph of each function. 

 34. 35. 

Figure Ex2.2. 1 

 

Figure Ex2.2. 2 

 

 36. 37. 

Figure Ex2.2. 3 

 

Figure Ex2.2. 4 

 

 38. 39. 

Figure Ex2.2. 5 

 

Figure Ex2.2. 6 

 

40. Standing on the shore of a lake, a fisherman sights a boat far in the distance to his left.  Let x , 

measured in radians, be the angle formed by the line of sight to the boat and a line due north from his 

position.  Assume due north is 0 and x  is measured negative to the left and positive to the right.  The 
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boat travels from due west to due east and, ignoring the curvature of the Earth, the distance  d x , in 

kilometers, from the fisherman to the boat is given by the function    1.5secd x x . 

a. What is a reasonable domain for  d x ? 

b. Graph  d x  on the domain. 

c. Find and discuss the meaning of any vertical asymptotes on the graph of  d x . 

d. Calculate and interpret 
3

d
  

 
.  Round to the nearest hundredth. 

e. Calculate and interpret 
6

d
 

 
 

.  Round to the nearest hundredth. 

f. What is the minimum distance between the fisherman and the boat?  When does this occur? 

41. A laser rangefinder is locked on a comet approaching Earth.  The distance  g x , in kilometers, of the 

comet after x  days, for x  in the interval 0 to 30 days, is given by   250,000csc
30

g x x
   

 
. 

a. Graph  g x  on the interval  0,30 . 

b. Evaluate  5g  and interpret the result. 

c. What is the minimum distance between the comet and Earth?  When does this occur?  To which 

constant in the equation does this correspond? 

d. Find and discuss the meaning of any vertical asymptotes. 

42. The function   20 tan
10

f x x
   

 
 marks the distance in the movement of a light beam from a police 

car across a wall for time x , in seconds, and distance  f x , in feet. 

a. Graph the function  f x  on the interval  0,5 . 

b. Find and interpret the vertical stretching factor, the period and any asymptotes. 

c. Evaluate  1f  and  2.5f  and discuss the function’s values at those inputs. 

43. Verify the identity    tan tanx x   by using technology to graph the right and left sides. 

44. Graph the function    tanf x x x   with the help of technology.  Graph y x  on the same set of 

axes and describe the behavior of f . 
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2.3 Applications of Radian Measure  

Learning Objectives 

 Determine arc length. 

 Determine area of a sector of a circle. 

 Solve problems involving linear and angular speed. 

This section focuses on applications involving radian measure.  We begin with a topic first introduced in 

Section 1.1, the correlation between arc length and radian measure of an angle. 

Arc Length 

We found in Section 1.1 that, for a circle with radius r , the radian measure of a central angle is 
s

r
  , 

where s is the length of the arc subtending the angle  .  Solving for s , we have a formula for arc length: 

s r . 

Figure 2.3. 1 

 

Length of a Circular Arc: In a circle of radius r , the length of an arc that subtends a central angle of 

measure   radians is s r . 

Note that in the above formula,   is the radian measure of an angle.  As in the following example, when 

an angle is given in degree measure, we must first convert to radians. 

Example 2.3.1. Find the length of an arc on a circle of radius 10 units that subtends a central angle of 

215°. 

Solution. To determine arc length, we must first convert the angle measure to radians. 

s

r
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215 215  radians

180

43
 radians

36





   
 





 

We next use 10r   units and 
43

36

   radians to determine the arc length: 

  

arc length

43
10 units

36

37.52 units

r




   
 



 

  

Example 2.3.2. Assume the orbit of Mercury around the sun is a perfect circle.  Mercury is 

approximately 36 million miles from the sun. 

1. In one Earth day, Mercury completes 0.0114 of its total revolution.  How many miles does it 

travel in one day? 

2. Use your answer from part 1 to determine the radian measure for Mercury’s movement in one 

day. 

Solution. 

1. Let’s begin by finding the circumference of Mercury’s orbit. 

  
2

2 36 million miles

72  million miles

C r









 

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the 

approximate distance traveled in one day: 

   0.0114 72  million miles 2.58 million miles   

2. We use the arc length, which is the distance traveled, to determine the radian measure   for 

Mercury’s movement in one day. 

 

arc length

radius
2.58 million miles

36 million miles
0.072 radians
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Area of a Sector 

We next determine the area of a sector of a circle.  A sector is a region of a circle bounded by two radii 

and the intercepted arc. 

Figure 2.3. 2 

 

Consider the ratio of the area of the sector to the area of the circle.  This ratio is equivalent to the ratio of 

the measure of the central angle of the sector (  radians) to the measure of the central angle of the circle 

( 2  radians).  For sector area A  and central angle  , we have the following: 

  

2

2

2

2

2

2

A

r

A r

r
A


 

 










 

Area of a Sector of a Circle: In a circle with radius r , the area of a sector having central angle of 

measure   radians is 21

2
A r . 

Be careful!  As in the arc length formula,   must be in radian measure when calculating the area of a 

sector of a circle. 

Example 2.3.3. An automatic sprinkler sprays a distance of 20 feet while rotating 30 degrees.  What 

is the area of the sector of grass the sprinkler waters? 

s

r
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Figure 2.3. 3 

 

Solution. We begin by converting the angle into radians. 

 
30 30  radians

180

 radians
6





   
 





 

The area of the sector can then be determined using 
6

   radians and 20r   feet. 

  

2

2

2

1
Area

2
1

20 feet
2 6

104.72 ft

r





   
 



 

  

Linear and Angular Speed 

We end Chapter 2 with applications involving circular motion.  Suppose an object is moving as pictured 

below, along a circular path of radius r  from the point P  to the point Q  in an amount of time t . 

Figure 2.3. 4 

 

20 feet

  o30

s

r

 
 P

 Q
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In the previous figure, s  represents the distance traveled.  The speed of this object,4 denoted v , is the 

ratio of distance traveled to time traveled, or 
distance

time
v  .  With t  representing time, we have 

 

s
v

t
r

t

r
t









 

    since =s r  

The quantity 
t


 is called the angular speed of the object.5  It is denoted by  , read as ‘omega’.  The 

quantity   is the rate of change of the angle   with respect to time and thus has units 
radians

time
. 

In the case of an object traveling along a circular arc, if the path of that object is uncurled to form a line 

segment, then the speed of the object on the line segment would be the same as the speed on the circle.  

For this reason, the quantity v  is often called the linear speed of the object in order to distinguish it from 

the angular speed,  .   

Putting together the ideas of the previous paragraphs, we get the following: 

Speed for Circular Motion 

For an object moving on a circular path of radius r  in time t , 

 The linear speed of the object is 
s

v
t

 , where s  is the arc length along the object’s path. 

 The angular speed of the object is 
t

  , where   is the radian measure of the central angle 

passed through by the object. 

 The linear speed may also be defined as v r , where   is the constant angular speed of the 

object. 

It is worth commenting on the units here.  The units of v  are 
length

time
, the units of r  are length only, and 

the units of   are 
radians

time
.  Thus, the left side of the equation v r  has units 

length

time
, and the right 

 
4 We are assuming here that speed is constant, so use the designation ‘speed’ instead of ‘average speed’. 
5 We are assuming here that angular speed is constant, so use the designation ‘angular speed’ instead of ‘average 
angular speed’. 
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side has units 
radians length radians

length
time time


  .  Since radian measure is just a number, 

length radians

time


 

is a multiple of 
length

time
, and thus the units are consistent. 

Example 2.3.4. Assuming that the surface of the Earth is a sphere, any point on the Earth can be 

thought of as an object traveling on a circle that completes one revolution in (approximately) 24 hours.  

The path traced out by a point during this 24-hour period is the latitude of the point.  Salt Lake 

Community College is 40.7608° North Latitude and the radius of the circle of revolution at this latitude is 

approximately 2999 miles.  Find the linear speed, in miles per hour, of Salt Lake Community College as 

the world turns.  

Solution. To use the formula v r , we first need to compute the angular speed  .  The Earth makes 

one revolution in 24 hours, and one revolution is 2  radians, so 

 
2  radians

24 hours

 radians/hour
12

t













 

The linear speed is 

  2999
12

785 miles/hour

v r




   
 



 

  

Example 2.3.5. An old vinyl record is played on a turntable rotating at a rate of 45 rotations per 

minute.  Find the angular speed in radians per second. 

Solution. We find angular speed by dividing the total angular rotation by the time.  We then convert to 

radians per second. 

 

45 rotations
angular speed

1 minute
45 rotations 2  radians 1 minute

1 minute 1 rotation 60 seconds
3

 radians/second
2
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Example 2.3.6. A bicycle has wheels 28 inches in diameter.  A tachometer determines the wheels are 

rotating at 180 RPM (revolutions per minute).  Find the speed the bicycle is traveling down the road. 

Solution. Here, we have an angular speed and need to find the corresponding linear speed, since the 

linear speed of the outside of the tires is the speed at which the bicycle travels down the road.  The 

equation v r  allows us to find linear speed given angular speed.  We begin by converting angular 

speed from revolutions (rotations) per minute to radians per minute. 

 
180 rotations 2  radians radians

360  
1 minute 1 rotation minute

    

The diameter of the wheels is 28 inches, for a radius of 14 inches, and we have the following: 

   14 360

inches
5040

minute

v r










 

Since radians are a dimensionless measure, it is not necessary to include them.  Finally, we may wish to 

convert this linear speed into a more familiar measurement, like miles per hour: 

 
inches 1 foot 1 mile 60 minutes

5040 14.99 miles per hour
minute 12 inches 5280 feet 1 hour

v       

Thus, the speed of the bicycle is approximately 15 miles per hour. 

  

Example 2.3.7. A bicycle with 27-inch diameter wheels has its gears set so that the chain is attached 

to a 4-inch diameter front sprocket and a 2-inch diameter back cog.  If the cyclist is peddling at one 

revolution per second, how fast is the bicycle moving in miles per hour? 

Solution. Here, the two gears are joined by a chain and the key is to realize that every point on the 

chain is moving at the same rate. 

Figure 2.3. 5 
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Each turn of the front sprocket will turn the back cog 
4

2
2
  times.  Thus, each rotation of the pedal will 

result in two revolutions of the wheel.  With the cyclist peddling at one revolution per second, and the 

circumference of the wheel being 2 27r   inches, the bicycle travels  2 27 54   inches per 

second.  We convert to miles per hour as follows: 

 
inches 1 foot 1 mile 60 seconds 60 minutes

54
second 12 inches 5280 feet 1 minute 1 hour

v       

After simplifying, we find that the bicycle is moving at approximately 9.6 miles per hour. 
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2.3 Exercises 

In Exercises 1 – 6, round your answers to two decimal places. 

 1. Find the length of an arc on a circle of radius 12 inches that subtends a central angle of 
4


 radians. 

 2. Find the length of an arc on a circle of radius 5.02 miles that subtends a central angle of 
3


. 

 3. Find the length of an arc on a circle of diameter 14 meters that subtends a central angle of 
5

6


. 

 4. Find the length of an arc on a circle of radius 10 centimeters that subtends a central angle of 50°. 

 5. Find the length of an arc on a circle of radius 5 inches that subtends a central angle of 220°. 

 6. Find the length of an arc on a circle of diameter 12 meters that subtends a central angle of 63°. 

In Exercises 7 – 12, compute the areas of the circular sectors with the given central angles and radii.  

Round your answers to two decimal places. 

 7. 
6

  , 12r   8. 
5

4

  , 100r   9. 330   , 9.3r   

 10.   , 1r   11. 240   , 5r   12. 1   , 117r   

13. A yo-yo which is 2.25 inches in diameter spins at a rate of 4500 revolutions per minute.  How fast is 

the edge of the yo-yo spinning in miles per hour?  Round your answer to two decimal places. 

14.  How many revolutions per minute would the yo-yo in Exercise 13 have to complete if the edge of the 

yo-yo is to be spinning at a rate of 42 miles per hour?  Round your answer to two decimal places. 

15. In the yo-yo trick ‘Around the World’, the performer throws the yo-yo so that it sweeps out a vertical 

circle whose radius is the yo-yo string.  If the yo-yo string is 28 inches long and the yo-yo takes 3 

seconds to complete one revolution of the circle, compute the speed of the yo-yo in miles per hour.  

Round your answer to two decimal places. 

16. A computer hard drive contains a circular disk with diameter 2.5 inches and spins at a rate of 7200 

RPM (revolutions per minute).  Find the linear speed of a point on the edge of the disk in miles per 

hour.  Round your answer to two decimal places. 
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17. The Giant Wheel at Cedar Point Amusement Park is a circle with diameter 128 feet.  It sits on an 8 

foot tall platform making its overall height 136 feet.  It completes two revolutions in 2 minutes and 7 

seconds.  Assuming the riders are at the edge of the circle, how fast are they traveling in miles per 

hour?  Round your answer to two decimal places. 

18. A truck with 32-inch diameter wheels is traveling at 60 miles per hour.  Find the angular speed of the 

wheels in radians per minute.  How many revolutions per minute do the wheels make?  Round your 

answer to two decimal places. 

19. A CD has diameter 120 millimeters.  When playing audio, the angular speed varies to keep linear 

speed constant where the disc is being read.  When reading along the outer edge of the disc, the 

angular speed is about 200 RPM (revolutions per minute).  Find the linear speed.  Round your answer 

to two decimal places. 

20. Imagine a rope tied around the Earth at the equator.  Show that you need to add only 2  feet of 

length to the rope in order to lift it one foot above the ground around the entire equator.  (You do 

NOT need to know the radius of the Earth to show this.) 

21. A bicycle with 19-inch diameter wheels has its gears set so that the chain is attached to a 6-inch radius 

front sprocket and a 2-inch radius back cog.  The cyclist pedals at 180 revolutions per minute.  How 

fast is the bicycle moving in miles per hour?  Round your answer to two decimal places. 
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CHAPTER 3 
TRIGONOMETRIC IDENTITIES 

 

Figure 3.0. 1 

Chapter Outline 

3.1 Using Trigonometric Identities  

3.2 Multiple Angle Identities 

Introduction 

In Chapter 3, we return to the exciting world of identities.  Recall that identities are equations 

relating variables that are true for any valid input in the relationship.  We experienced several 

identities related to the Pythagorean Theorem in Chapter 1.  Here, we will be identifying and 

exploring many new identities through the use of symmetries and patterns we viewed in the 

graphs of functions from Chapter 2. 

Hopefully, these will not come across as just a laundry-list of formulas to memorize.  These 

identities tend to be easier to understand, recall, and manipulate if you understand why they 

work, rather than just accepting them as facts.  Pay careful attention to what the identities mean. 

Section 3.1 covers the even/odd identities related to a trigonometric function’s symmetry. As 

well, it addresses the sum and difference identities, which connect sine, cosine, and tangent with 

multivariate inputs. Section 3.2 explores the double- and half-angle identities that have 

application in simplifying trigonometric expressions and finding exact values of trigonometric 

functions of non-standard angles. 
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Throughout Chapter 3, attention will be paid to finding exact values of trigonometric functions, 

writing trigonometric expressions in varying formats, and verifying trigonometric identities.  

These skills will be important in the future study of Calculus. 
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3.1 Using Trigonometric Identities  

Learning Objectives 

 State the even/odd identities. 

 Use even/odd identities in simplifying trigonometric expressions. 

 Use even/odd identities in verifying trigonometric identities. 

 State the sum and difference identities for sine, cosine, and tangent. 

 Use sum and difference identities to find values of trigonometric functions. 

 Use sum and difference identities in verifying trigonometric identities. 

 State and apply the co-function identities. 

In Section 1.5, we saw the utility of Pythagorean identities, along with the quotient and reciprocal 

identities.  Not only did these identities help us compute values of trigonometric functions, they were also 

useful in simplifying expressions.  In this section, we formally introduce the even/odd identities1, while 

recalling their graphical significance from Chapter 2.  After establishing the even/odd identities, we 

move on to sum and difference identities and co-function identities, further increasing our ability to find 

trigonometric function values and verify trigonometric identities. 

The Even/Odd Identities 

Theorem 3.1. The Even/Odd Identities: For all angles   for which the following are defined, 

    sin sin     

    csc csc     

    cos cos    

    sec sec    

    tan tan     

    cot cot     
 

In light of the quotient and reciprocal identities, it suffices to show that    sin sin     and 

   cos cos   .  The remaining four trigonometric functions can be expressed in terms of  sin   and 

 cos  , so the proofs of their even/odd identities are left as exercises. 

 
1 As mentioned at the end of Section 1.4, properties of the trigonometric functions, when thought of as functions of 
angles in radian measure, hold equally well if we view these functions as functions of real numbers.  Not 
surprisingly, the even/odd properties of the trigonometric functions are so named because they identify cosine and 
secant as even functions, while the remaining four trigonometric functions are odd. 
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Consider an angle   plotted in standard position.  Let 0  be the angle coterminal with   such that 

00 2   .  (We can construct the angle 0  by rotating counter-clockwise from the positive x-axis to the 

terminal side of   as shown in the following illustration.)  Since   and 0  are coterminal, 

   0sin sin   and    0cos cos  . 

Figure 3.1. 1 

 

We now consider the angles   and 0 .  Since   is coterminal with 0 , there is some integer k  for 

which 0 2 k    .  It follows that 

 
 

0

0

2

2

k

k

  
 

   

   
 

Since k  is an integer, so is k , which means   is coterminal with 0 .  Hence,    0sin sin     

and    0cos cos    . 

We let P  and Q  denote the points on the terminal sides of 0  and 0 , respectively, that lie on the Unit 

Circle.  By definition, the coordinates of P  are     0 0cos ,sin   and the coordinates of Q  are 

    0 0cos ,sin   . 

Figure 3.1. 2 

 

x

y

 

 

0

1

1 y

x

 

0

 

0

      0 0cos ,sinP  

      0 0cos ,sinQ   
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Since 0  and 0  sweep out congruent sectors of the Unit Circle, it follows that the points P  and Q  are 

symmetric about the x-axis.  Thus,    0 0sin sin     and    0 0cos cos   .  Since the sines and 

cosines of 0  and 0  are the same as those for   and  , respectively, we get    sin sin     and 

   cos cos   , as required. 

Using Even/Odd Identities in Simplifying Expressions 

The even/odd identities are readily demonstrated using any of the standard angles noted in Section 1.3.  

Their true utility, however, lies not in computation but in simplifying expressions involving the 

trigonometric functions. 

Example 3.1.1. Use identities to fully simplify2 the expression      1 sin 1 sinx x   . 

Solution. We begin with the odd identity    sin sin    , substituting x  for  . 

 

           
 

 

2

2

difference of  squares

Pythagorean identity

1 sin 1 sin 1 sin 1 sin

1 sin

cos

x x x x

x

x

     

 



                    

                        

 

  

Using Even/Odd Identities in Verifying Trigonometric Identities 

Looking back at Section 1.5, where we began verifying identities, we can now add the even/odd identities 

to the Pythagorean, quotient, and reciprocal identities as tools in verifying other trigonometric identities. 

Example 3.1.2. Verify the identity 
   
       

2 2sin cos
cos sin

sin cos

 
 

 
  

 
  

. 

Solution. We begin with the left, more complicated, side. 

 
2 ‘Fully simplify’ is sometimes subject to interpretation.  
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The Sum and Difference Identities for Cosine 

We begin with a theorem introducing the sum and difference identities for cosine, followed by a proof of 

that theorem.  Then, after the introduction of the co-function identities, sum and difference identities for 

sine and tangent will logically follow. 

Theorem 3.2. Sum and Difference Identities for Cosine: For all angles   and  , 

          cos cos cos sin sin         

          cos cos cos sin sin         

We first prove the result for differences.  As in the proof of even/odd identities, we can reduce the proof 

for general angles   and   to angles 0  and 0 , coterminal with   and  , respectively, with 

00 2    and 00 2   .  Since   and 0  are coterminal, as are   and 0 , it follows that    

is coterminal with 0 0  .  Consider the following case where 0 0  : 

Figure 3.1. 3 

 
1

1
y

x

O

      0 0cos ,sinP  
      0 0cos ,sinQ  

 

0
 

0

 

0 0 
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Since the angle POQ  (above) is congruent to the angle AOB  (below), the distance between P  and Q  is 

equal to the distance between A  and B .3 

Figure 3.1. 4 

 

With distance QP  equal to distance BA , we use the distance formula to find 

             22 2

0

2

0 0 0 00 0 0 cc s os 1 sino 0s co sin sin                          

Or, after squaring both sides, 

             22 2

0

2

0 0 0 00 0 0 cc s os 1 sino 0s co sin sin                          

We expand the left side and apply a Pythagorean identity to get 

       2 2

0 0 0 0cos cos sin sin              

 

               
               

       

2 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 0 0 0

0 0 0 0

cos 2cos cos cos sin 2sin sin sin

sin cos sin cos 2cos cos 2sin sin

2 2cos cos 2sin sin

       

       

   

     

           
  

 

Turning our attention to the right side, and again applying a Pythagorean identity, we have 

 

         
     

 

2 2 2 2
0 0 0 0 0 0 0 0 0 0

2 2
0 0 0 0 0 0

0 0

cos 1 sin 0 cos 2cos 1 sin

sin cos 1 2cos

2 2cos

         

     

 

                  
        

  

 

We put both sides together,          0 00 0 0 02 2co 2s cos 2sin osin 2c s        , then simplify 

as follows: 

 

         
         
         

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

2

2cos 2 2cos c

 

swap sides

ss ubtract 2 from

os 2sin sin

2c  each side

divide through by

os 2cos cos 2sin in

cos cos cos si  n sin

     

     

     

    

    

  

   

     

             

  

 
3 In the illustrations, the triangles POQ and AOB are congruent.  However, 0 0   could be 0 or it could be π, 

neither of which makes a triangle.  Or, 0 0   could be larger than π, which makes a triangle, just not the one 

we’ve drawn.  You should think about these three cases. 

1
y

x

O

 

0 0 

   1,0B

      0 0 0 0cos ,sinA     
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Since   and 0 ,   and 0 ,    and 0 0  , are all coterminal pairs of angles, we have 

          cos cos cos sin sin         

This verifies the difference identity for cosine when 0 0  .  In the case where 0 0  , we can apply 

the above argument to the angle 0 0   to obtain the identity 

          0 0 0 0 0 0cos cos cos sin sin         

Applying the even identity of cosine, we get 

 
    

 
0 0 0 0

0 0

cos cos

cos

   

 

    

 
 

It follows that          cos cos cos sin sin        . 

To verify the sum identity for cosine, we use the difference identity, along with even/odd identities: 

 

    
       
       
        
       

 

c

 

os cos

cos cos sin sin

cos

o

 cos sin sin

cos cos sin sin

cos

difference id

n

entity for cosine

  even identity of cosine

 dd identity of 

cos s i

sin

i s

e

n

   

   

   

   

   

   

   

  

  

 

   

 

 

We put these newfound identities to good use in the following examples. 

Example 3.1.3. Find the exact value of  cos 15 . 

Solution. In order to use a sum or difference identity to find  cos 15 , we need to write 15° as a sum 

or difference of angles for which we know the values of their sines and cosines.  One way to do this is to 

write 15 45 30    .  Then we use the difference identity for cosine to get 

 

   
       

cos 15 cos 45 30

cos 45 cos 30 sin 45 sin 30

2 3 2 1

2 2 2 2

6 2

4 4

6 2

4
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The Co-function Identities 

We begin with an example. 

Example 3.1.4. Verify the identity  cos sin
2

     
 

, where   is any angle in radians. 

Solution. This is a straightforward application of the difference identity for cosine. 

 

   

       
 

cos cos cos sin sin
2 2 2

0 cos 1 sin

sin

    

 



            
     

 



 

  

The identity verified in Example 3.1.4, namely  cos sin
2

     
 

, is the first of the co-function 

identities.  Next, by replacing   with 
2

   
 

 in  sin cos
2

    
 

, we get 

 

 

sin cos
2 2 2

cos

   



               


 

This says, in words, that the ‘co’sine of an angle is the sine of its ‘co’mplement.  Now that these identities 

have been established for sine and cosine, the remaining trigonometric functions follow suit.  Their proofs 

are left as exercises. 

Theorem 3.3. Co-function Identities: For all angles  , measured in radians,4 for which the following 

are defined, 

  sin cos
2

     
 

 

  cos sin
2

     
 

 

  sec csc
2

     
 

 

  csc sec
2

     
 

 

  tan cot
2

     
 

 

  cot tan
2

     
 

 

 

Note that in the case of an acute angle  , the angles   and 
2

   are the two acute angles in a right 

triangle, as demonstrated below. 

 
4 If   is measured in degrees, replace 

2


 with 90 degrees in each identity. 
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Figure 3.1. 5 

 

Example 3.1.5. Use the result from Example 3.1.3,   6 2
cos 15

4


 , to find the exact value of 

 sin 75 . 

Solution. From the co-function identities, we have    sin 90 cos   , where   is in degrees.  

With    sin 75 sin 90 15    , it follows that    sin 75 cos 15  .  Then, since   6 2
cos 15

4


 , 

we have   6 2
sin 75

4


 . 

  

With the co-function identities in place, we are now in the position to derive the sum and difference 

identities for sine. 

The Sum and Difference Identities for Sine 

We begin with the sum identity. 

 

   

   

       

us nin co-f ction identity

differen
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cos
2

cos fcos sin sin
2 2

sin cos
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so
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n
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             co-function identities    

 

We can derive the difference identity for sine by rewriting  sin    as   sin     and using the 

sum identity and the even/odd identities.  Again, we leave the details to the reader. 
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Theorem 3.4. Sum and Difference Identities for Sine: For all angles   and  , 

          sin sin cos cos sin         

          sin sin cos cos sin         

Example 3.1.6. Find the exact value of 
19

sin
12

 
 
 

. 

Solution. As in Example 3.1.3, we need to write the angle 
19

12


 as a sum or difference of standard 

angles.  The denominator of 12 suggests a combination of angles with denominators 3 and 4.  One such 

combination is 

 

19 16 3

12 12 12
4

3 4

  

 

 

 
 

Proceeding, we have 

 

19 4
sin sin

12 3 4

4 4
sin cos cos sin

3 4 3 4

3 2 1 2

2 2 2 2

6 2

4 4

6 2

4

sum identity for sine

  

   

       
   

               
       

                      

  

 


  

 

  

Example 3.1.7. If   is a Quadrant II angle with   5
sin

13
   and   is a Quadrant III angle with 

 tan 2  , find  sin   . 

Solution. We are given   5
sin

13
  , but to use the difference identity for sine we will also need to 

find  cos  ,  sin  , and  cos  .5 

 We use the Pythagorean identity    2 2sin cos 1   , along with   5
sin

13
  , to find  cos  : 

 
5 In this solution, we use Pythagorean identities to determine cos(α), sin(β) and cos(β).  These values may also be 
found graphically, as in Example 1.6.3. 
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 We next use a different Pythagorean identity,    2 2tan 1 sec   , along with  tan 2  , to 

find  cos  : 

 

   
 
 

 

 

2 2

since  is a Qua

5

drant III a

a

2 1 sec

sec

 

5

sec 5

1
5

co
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reciprocal f
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 Having   1
cos

5
    and  tan 2  , we use the quotient identity for tangent, 

   
 

sin
tan

cos





 , to determine  sin  : 

 

     

   

 

from quotien

5

t identity for tangensin tan cos

1
sin 2

5

2
s

t

in

  







   
 

 

  

 

Now that we have the necessary values, we proceed to determine the value of  sin   : 

 

         sin sin cos cos sin

5 1 12 2

13 135 5

29

13 5

29 5

65

difference identity for sine       
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The Sum and Difference Identities for Tangent 

In the next example, we use the sum identities for sine and cosine to determine a sum identity for tangent. 

Example 3.1.8. Derive a formula for  tan    in terms of  tan  and  tan  . 

Solution. We start with the quotient identity for tangent, along with sum identities for sine and cosine. 

 

   
 
       
       

sin
tan

cos

sin cos cos sin

cos cos sin sin

 
 

 

   
   


 








 

Our next goal is to get our terms in a format that we can rewrite as tangents, i.e., 
 
   sin

tan
cos





  and 

 
   sin

tan
cos





 .  With this goal in mind, we multiply the numerator and denominator by 

   
1

cos cos 
: 

         
       

   

   

   
   

   
   

   
   

   
   

sin cos cos sin1
sin cos cos sin cos cos cos cos cos cos

tan
1 cos cos sin sincos cos sin sin

cos cos cos cos cos cos

   
         

 
      

     




   



 

After simplifying, we have 

  

 
 

 
 

 
 

 
 

   
   

sin sin

cos cos tan tan
tan

sin sin 1 tan tan
1

cos cos

 
   

 
   
 




  


 
 

Thus, our result is the formula      
   

tan tan
tan

1 tan tan

 
 

 


 


.  Naturally, this result is limited to those 

cases where all of the tangents are defined. 
  

The formula developed in Example 3.1.8 for  tan    can be used to find a formula for  tan    

by rewriting the difference as a sum,   tan    .  The reader is encouraged to fill in the details.  

Below, we summarize the sum and difference identities for sine, cosine, and tangent. 
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Theorem 3.5. Sum and Difference Identities: For all angles   and   for which the following are 

defined, 

          sin sin cos cos sin         

          cos cos cos sin sin         

      
   

tan tan
tan

1 tan tan

 
 

 


 


 

In the statement of Theorem 3.5, we have combined the cases for the sum ‘+’ and difference ‘−’ of 

angles into one formula.  The convention is that if you want the formula for the sum ‘+’ of two angles, 

use the top sign in the formula; for the difference ‘−’ use the bottom sign.  For example, 

      
   

tan tan
tan

1 tan tan

 
 

 


 


 

Example 3.1.9. Find the exact value of  tan 75 . 

Solution. We use the sum identity for tangent, first writing  tan 75  as  tan 45 30  . 

 

   
   
   

 

sum identi

1

ty for t

tan 75 tan 45 30

tan 45 tan 30

1 tan 45 tan 30

1
1

3
1

1 1
3

3 1

angent

3 1 3

3

3 1

3

3 1

3

or 
3 3 -1

 









   
 

    
    

   






  

  

  

 

 

 

  

As promised in Section 2.2, we finish this section by proving algebraically that the period of the tangent 

function is  .  Recall that a function f  is periodic if there is a real number p  so that    f x p f x   

for all real numbers x  in the domain of f .  The smallest positive number p , if it exists, is called the 

period of f .  To prove that the period of  tany x  is  , we appeal to the sum identity for tangent: 
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tan tan
tan

1 tan tan

tan 0

1 tan 0

tan

x
x

x

x

x

x







 









 

This tells us that the function  tany x  is periodic and that its period is at most  .  To show it is 

exactly  , suppose p  is a positive real number so that    tan tanx p x   for all real numbers x .  For 

0x  , we have 

 

   
     

tan tan 0

tan 0

0

  from  tan tanx p

p

x

p 

 



       

This means p  is a multiple of  .  The smallest positive multiple of   is   itself, so we have established 

that the period of the tangent function is  .  We leave it to the reader to establish that the period of the 

cotangent function is also  .6 

 
6 Certainly, mimicking the proof for the period of tan(x) is an option.  For another approach, consider transforming 
tan(x) to cot(x) using identities. 
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3.1 Exercises 

 1. We know    cosg x x  is an even function while    sinf x x  and    tanh x x  are odd 

functions.  What about    2cosG x x ,    2sinF x x  and    2tanH x x ?  Are they even, odd, 

or neither?  Why? 

 2. Examine the graph of    secf x x  on the interval  ,  .  How can we tell whether the function 

   secf x x  is even or odd from its graph? 

In Exercises 3 – 8, use identities to fully simplify the expression. 

 3.      sin cos cscx x x    4.      csc cos cotx x x   

 5. 
   

 
cot tan

sec

t t

t




 6.          3 23sin csc cos 2cos cost t t t t    

 7.    tan cotx x    8. 
         

 
sin cos sec csc tan

cot

x x x x x

x

 
 

In Exercises 9 – 23, use the sum and difference identities to find the exact value.  You may have need of 

the quotient, reciprocal, or even/odd identities as well. 

 9.  cos 75  10.  sec 165  11.  sin 105  

 12.  csc 195  13.  cot 255  14.  tan 375  

 15. 
13

cos
12

 
 
 

 16. 
11

sin
12

 
 
 

 17. 
13

tan
12

 
 
 

 

 18. 
7

cos
12

 
 
 

 19. 
17

tan
12

 
 
 

 20. sin
12

 
 
 

 

 21. 
11

cot
12

 
 
 

 22. 
5

csc
12

 
 
 

 23. sec
12

  
 

 

24. If   is a Quadrant IV angle with   5
cos

5
   and   10

sin
10

   where 
2

    , find 

 (a)  sin    (b)  cos    (c)  sin    (d)  cos    
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25. If  tan 2    where 
3

2
2

    , and   is a Quadrant II angle with   1
tan

3
   , find 

 tan   .  

26. If  csc 3   where 0
2

  , and   is a Quadrant II angle with  tan 7   , find 

 (a)  sin    (b)  cos    (c)   sin    (d)  cos    

27. If   3
sin

5
   where 0

2

  , and   12
cos

13
   where 

3
2

2

    , find 

 (a)  sin    (b)  cos    (c)  tan    

28. If   5
sec

3
    where 

2

    , and   24
tan

7
   where 

3

2

   , find 

 (a)  csc    (b)  sec    (c)  cot    

In Exercises 29 – 32, verify the identity or show that it is not an identity.  Assume all quantities are 

defined. 

 29. 
       1 1

2cot csc
1 cos 1 cos

x x
x x
  

  
 30. 

 
     2tan

sin cos
sec

x
x x

x
   

 31. 
 

     sec
sin

tan cot

x
x

x x


  


 32. 

 
 

 
 

1 sin cos

cos 1 sin

x x

x x




 
 

In Exercises 33 – 51, verify the identity.  Assume all quantities are defined. 

 33.    sin 3 2 sin 2 3        34. cos 5 cos 5
4 4

t t
          

   
 

 35.    2 2tan 1 tan 1t t      36.    csc 5 csc 5       

 37.    sec 6 sec 6t t   38.    cot 9 7 cot 7 9      

 39.    cos cos      40.    sin sin     

 41.  tan cot
2

     
 

 42.        sin sin 2sin cos          

 43.        sin sin 2cos sin          44.        cos cos 2cos cos          
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 45. 
 
 

   
   

sin 1 cot tan

sin 1 cot tan

   
   
 


 

 46. 
 
 

   
   

cos 1 tan tan

cos 1 tan tan

   
   
 


 

 

 47.        cos cos 2sin sin           

 48. 
 
 

       
       

tan sin cos sin cos

tan sin cos sin cos

     
     
 


 

 

 49. 
           sin sin sin cos 1

cos sin
t h t h h

t t
h h h

      
    

   
 

 50. 
           cos cos cos 1 sin

cos sin
t h t h h

t t
h h h

      
    

   
 

 51. 
       

   
2tan tan tan sec

1 tan tan

t h t h t

h h t h

    
      

 

52. Verify the even/odd identities for tangent, cosecant, secant, and cotangent. 

53. Verify the co-function identities for tangent, cosecant, secant, and cotangent. 

54. Verify the difference identities for sine and tangent. 
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3.2 Multiple Angle Identities  

Learning Objectives 

 State the double-angle identities for sine, cosine, and tangent. 

 Find trigonometric values of double-angles. 

 Verify identities that include double-angles. 

 State and apply the power reduction formulas for sine and cosine. 

 State and apply the half-angle formulas for sine, cosine, and tangent. 

 State and apply the product-to-sum formulas for sine and cosine. 

 State and apply the sum-to-product formulas for sine and cosine. 

The identities in this section follow easily from the sum identities that were introduced in Section 3.1.  

These new identities will allow us to evaluate exact values of trigonometric functions that we could not 

find prior to this section.  We will also use identities to break down or rewrite trigonometric expressions 

in ways that will be useful in Calculus.  

Double-Angle Identities 

Recall the sum identities from Section 3.1: 

 

         
         

     
   

sin sin cos cos sin

cos cos cos sin sin

tan tan
tan

1 tan tan

     

     

 
 

 

  

  


 



 

Double-angle identities relate trigonometric functions of double angles 2θ with trigonometric functions of 

an angle θ.  To derive these, we set    and    in the above sum identities.  Following Theorem 

3.6, we will look at some of these derivations.   

Theorem 3.6. Double-Angle Identities: For all angles   for which the following are defined, 

      sin 2 2sin cos    

      2 2cos 2 cos sin      

Other forms:    2cos 2 2cos 1    or    2cos 2 1 2sin    

    
 2

2 tan
tan 2

1 tan
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The double-angle identity for cosine,      2 2cos 2 cos sin    , is derived as follows: 

   
       
   2 2

t

cos 2 cos

cos cos sin si osum identi y n

cos sin

for c sine

  

   

 

 

 

 

  

                  

 

To arrive at the alternate form    2cos 2 2cos 1   , we apply the Pythagorean identity. 

 

     
       
   
 

2 2

2

2

2 22

2

2

fro

1

cos 2 cos si

1

n

cos m sin cos1 cos

cos 1 cos

2cos

  







 



 

     

  







  
 

Likewise, the Pythagorean identity may be used to derive the form    2cos 2 1 2sin    from 

     2 2cos 2 cos sin    .  We leave the proofs of the remaining double-angle identities to the reader. 

Trigonometric Values of Double-Angles 

Now that we have established the double-angle identities, we put them to good use in determining 

trigonometric values of double-angles. 

Example 3.2.1. Suppose point  3,4P   lies on the terminal side of angle  , when   is plotted in 

standard position.  Find  sin 2  and  cos 2 .  Determine the quadrant in which the terminal side of the 

angle 2  lies when it is plotted in standard position.  

Solution. Point  3,4P   lies on the circle of radius r , where 2 2r x y  . 

Figure 3.2. 1 

 

With 3x    and 4y  , we find    2 2
3 4 25 5r      .  Then   4

sin
5

y

r
    and 

  3
cos

5

x

r
    .  It follows that 
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      from doubl
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3
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and 

 

     2 2

2 2

from double-angle

5

4

 idenc titos 2 c s yo sin

3

5 5

7

2

   

        
   

 

  

 

Since both the sine and cosine of 2  are negative, the terminal side of 2 , when plotted in standard 

position, lies in Quadrant III. 

  

Example 3.2.2. If  sin x   for 
2 2

    , find an expression for  sin 2  in terms of x . 

Solution. If your first reaction to ‘  sin x  ’ is that x  should be the cosine of  , then you have 

indeed learned something.  However, context is everything.  Here, x  is just a variable.  It does not 

necessarily represent the x-coordinate of a point on the Unit Circle.  Here, x  represents the quantity 

 sin  , and what we wish to know is how to express  sin 2  in terms of x .  We will see more of this 

kind of thing in Chapter 4 and, as usual, this is something we need for Calculus. 

We start with the double-angle identity for sine: 

 
     

   m

s

 

in

fro the problem st e

2

atem nt tha

2sin cos

2 c t sinos xx





 





           
 

We need to write  cos   in terms of x  to finish the problem, and once again return to the Pythagorean 

identity to help us out. 

 

   
 
 

   

2 2

2 2

2

2

Pythagorean identity

from the problem statement

cos 0  since  
2 2

sin cos 1

cos 1

cos 1

cos 1

x

x

x

 




  

 

 

  

     

              

              

    

 

Finally, back to finding an expression for  sin 2 , we have an answer of   2sin 2 2 1x x   . 
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Verifying Identities that Include Double-Angles 

We return to verifying trigonometric identities. 

Example 3.2.3. Verify the identity    
 2

2 tan
sin 2

1 tan








. 

Solution. Starting with the more complicated right side of the equation,  
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2

ty

quotient an

o

d recipr i
cos

1

cos

sin c s
2
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sin 2

es

 
 






 


 






 
  
 
 
  
 
  

      




                        

                   

  double-angle identity for sine                       

 

  

Example 3.2.4. Verify the identity      
2

tan 2
cot tan


 




. 

Solution. In this case, we begin with the left side of the equation (explanation to follow). 

   
 

 
  

 

 

   

   

2

2

t

2 tan
tan 2

1 tan

1

tan2

f

tan

1 tan 1

tan

double-angle identity for tangent

goal: numerator of 2

reciprocal identity or 

2
1

tan
tan

2

c
c g

ot ta
otan e

n
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Example 3.2.4 is a case where the more complicated side of the initial equation appears to be on the right, 

but we chose to start with the left side in order to change from the double angle 2θ to the angle θ, which 

was used on the right side.  Beginning with the right side would require some thinking ahead.  Try it!  
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When using identities to simplify a trigonometric expression, solve a trigonometric equation, or verify a 

trigonometric identity, there are usually several paths to a desired result. There is no set rule as to what 

side should be manipulated, although generally one of the paths will result in a simpler solution.  In 

verifying identities, the strategies established in Section 1.5 will help, but there is no substitute for 

practice. 

One more note before moving on to power reduction and half-angle formulas.  While double-angle 

identities could be established for cosecant, secant, and cotangent, the identities already established in this 

section may be used in their place.  Recall that cosecant, secant, and cotangent are reciprocals of sine, 

cosine, and tangent, respectively.  Thus, for example,    
1

sec 2
cos 2




  and so any of the three double-

angle identities for cosine may be used in determining  sec 2 . 

Power Reduction Formulas 

While the double-angle identities allow us to write  cos 2  as powers of sine and/or cosine, in Calculus 

we occasionally do the reverse; that is, reduce the power of sine or cosine.  Solving the identity 

   2cos 2 1 2sin    for  2sin   and the identity    2cos 2 2cos 1    for  2cos   result in the 

following aptly-named ‘power reduction’ formulas. 

Theorem 3.7. Power Reduction Formulas: For all angles  , 

    2 1 cos 2
sin

2





  

    2 1 cos 2
cos

2





  

Example 3.2.5. Rewrite    2 2sin cos   as a sum and/or difference of cosines to the first power. 

Solution. We begin with a straightforward application of Theorem 3.7: 



T3-24 Trigonometric Identities 
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1 cos 2 1 cos 2
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Half-Angle Formulas 

Another application of the power reduction formulas is the half-angle formulas.  To start, we apply the 

power reduction formula to 2sin
2

 
 
 

: 

 

2 replace  

2

s with  

1 cos

in power reduction formu a

2
2

in
2 2

1 cos

l
2










          
 




 

We obtain a formula for sin
2

 
 
 

 by extracting square roots.  In a similar fashion, we obtain a half-angle 

formula for cosine.  The half-angle formula for tangent results from using a quotient identity.  Following 

is a summary of these formulas. 

Theorem 3.8. Half-Angle Formulas: For all angles   for which the following are defined, 

 
 1 cos

sin
2 2

     
 

  
 1 cos

cos
2 2

     
 

  
 
 

1 cos
tan

2 1 cos




      
 

The choice of ‘+’ or ‘–‘ depends on the quadrant in which the terminal side of 
2


 lies. 

Example 3.2.6. Use a half-angle formula to find the exact value of  cos 15 . 

Solution. To use the half-angle formula, we note that 
30

15
2




 . 
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Because we know that  cos 15  is positive (15º is in Quadrant I), 

 

  1 3 2
cos 15

2

1 3 2 2

2 2

2 3

2


 


 






 

  

Back in Example 3.1.3, we found  cos 15  by using the difference identity for cosine.  In that case, we 

determined   6 2
cos 15

4


 .  The reader is encouraged to prove that these two expressions are equal. 

Example 3.2.7. Suppose 0     and   3
cos

5
   .  Find sin

2

 
 
 

. 

Solution. If 0    , then 0
2 2

 
   , which means sin 0

2

   
 

. 
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We simplify as follows: 

1 3 5 5 5 3 2

2 105 5

 
       

Thus, 
2

sin
2 5

    
 

, or 
2 5

5
  with a rationalized denominator. 

  

Example 3.2.8. Prove the identity 
 
 

sin
tan

2 1 cos




     
. 

Solution. We start with the more complicated side, which is the right side. 
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The next example uses identities already established in this section to rewrite a trigonometric expression 

with argument 3  as the sum of trigonometric expressions with argument  . 

Example 3.2.9. Express  cos 3  as a polynomial in terms of  cos  . 

Solution. The double angle identity    2cos 2 2cos 1    expresses  cos 2  in terms of  cos  .  

We are asked to find such an identity for  cos 3 .  First, we consider 3θ as  2   and apply the sum 

identity for cosine. 

   
       

           
       
        
       

2

3 2

3 2

3 3

c

n i

os 3 cos 2

cos 2 cos sin 2 sin  

2cos 1 cos 2sin cos sin

2cos cos 2sin cos

2 icos cos 2 1 cos cos

2cos cos 2cos

c

2co

sum identity for osine

double angle ide tit es

Pythagorean ident ty

s

  

   

    

   

   

   

 

 

  

  

   

   

   34cos 3cos  

 

Thus,  cos 3  can be expressed as the polynomial    34cos 3cos  . 
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Having just shown how we could rewrite  cos 3  as the sum of powers of  cos  , it might occur to you 

that similar operations could be applied to  cos 4  or  cos 5  to rewrite the expressions as sums of 

powers of  cos  .  Try it! 

The following formulas are particularly useful in spring-mass-dashpot systems and in electrical circuits. 

Product-to-Sum Formulas 

Our next batch of identities, the product-to-sum formulas7, are easily verified by expanding each of the 

right sides in accordance with the sum and difference identities.  The details are left as exercises. 

Theorem 3.9. Product-to-Sum Formulas: For all angles   and  , 

        1
sin sin cos cos

2
             

        1
cos cos cos cos

2
             

        1
sin cos sin sin

2
             

Example 3.2.10. Write    cos 2 cos 6   as a sum. 

Solution. Identifying 2   and 6  , we use the product-to-sum formula for    cos cos  : 

 

       

   

    e

1
cos 2 cos 6 cos 2 6 cos 2 6

2
1

cos 4 cos

even pro

8
2
1

2
perty o

1
cos 4 o f co is 8 s nc

2

     

 

 

      

     

 

 

  

Sum-to-Product Formulas 

Related to the product-to-sum formulas are the sum-to-product formulas.  These are easily verified using 

the product-to-sum formulas and, as such, their proofs are left as exercises. 

 
7 These are also known as the Prosthaphaeresis Formulas and have a rich history.  Conduct some research on them 
as your schedule allows. 
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Theorem 3.10. Sum-to-Product Formulas: For all angles   and  , 

    sin sin 2sin cos
2 2

             
   


 

    cos cos 2cos cos
2 2

              
   

 

    cos cos 2sin sin
2 2

               
   

 

Example 3.2.11. Write    sin sin 3   as a product. 

Solution. The sum-to-product formula for    sin sin  , with    and 3  , yields the 

following: 

 

   

   
    e

3 3
sin sin 3 2sin cos

2 2
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The identities established in Chapter 3 will prove useful throughout the remainder of this textbook.  In 

Chapter 4, these identities will be particularly helpful in solving trigonometric equations. 
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3.2 Exercises 

In Exercises 1 – 10, use the given information about   to determine the exact value. 

 1. If   7
sin

25
    and 

3
2

2

    , find  sin 2 . 

 2. If   28
cos

53
   and 0

2

  , find  cos 2 . 

 3. If   12
tan

5
   and 

3

2

   , find  cos 2 . 

 4. If  csc 4   and 
2

    , find  sin 2 . 

 5. If   3
cos

5
   and 0

2

  , find  sin 2 . 

 6. If   4
sin

5
    and 

3

2

   , find  cos 2 . 

 7. If   12
cos

13
   and 

3
2

2

    , find  cos 2 .  

 8. If   5
sin

13
   and 

2

    , find  sin 2 . 

 9. If  sec 5   and 
3

2
2

    , find  tan 2 . 

 10. If  tan 2    and 
2

    , find  tan 2 . 

In Exercises 11 – 25, use half-angle formulas to find the exact value.  You may have need of the quotient, 

reciprocal, or even/odd identities as well. 

 11.  cos 75  12.  sin 105  13.  cos 67.5  

 14.  sin 157.5  15.  tan 112.5  16. 
7

cos
12

 
 
 

 

 17. sin
12

 
 
 

 18. cos
8

 
 
 

 19. 
5

sin
8
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 20. 
7

tan
8

 
 
 

 21. 
11

cos
12

  
 

 22. 
11

sin
12

 
 
 

 

 23. 
5

tan
12

 
 
 

 24. 
3

tan
12

  
 

 25. 
3

tan
8

  
 

 

In Exercises 26 – 39, use the given information about   to find the exact value. 

 26. If   7
sin

25
    and 

3
2

2

    , find sin
2

 
 
 

. 

 27. If   28
cos

53
   and 0

2

  , find cos
2

 
 
 

. 

 28. If   12
tan

5
   and 

3

2

   , find cos
2

 
 
 

. 

 29. If  csc 4   and 
2

    , find sin
2

 
 
 

. 

 30. If   3
cos

5
   and 0

2

  , find tan
2

 
 
 

. 

 31. If   4
sin

5
    and 

3

2

   , find sin
2

 
 
 

. 

 32. If   12
cos

13
   and 

3
2

2

    , find tan
2

 
 
 

. 

 33. If   5
sin

13
   and 

2

    , find cos
2

 
 
 

. 

 34. If  sec 5   and 
3

2
2

    , find sin
2

 
 
 

. 

 35. If  tan 2    and 
2

    , find cos
2

 
 
 

. 

 36. If   4
tan

3
    and   is in Quadrant IV, find cos

2

 
 
 

. 

 37. If   12
sin

13
    and   is in Quadrant III, find sin

2

 
 
 

. 
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 38. If  csc 7   and   is in Quadrant II, find cos
2

 
 
 

. 

 39. If  sec 4    and   is in Quadrant II, find tan
2

 
 
 

. 

In Exercises 40 – 45, write the given product as a sum.  You may need to use an even/odd identity. 

 40.    cos 3 cos 5   41.    sin 2 sin 7   42.    sin 9 cos   

 43.    cos 2 cos 6   44.    sin 3 sin 2   45.    cos sin 3   

In Exercises 46 – 51, write the given sum as a product.  You may need to use an even/odd or co-function 

identity. 

 46.    cos 3 cos 5   47.    sin 2 sin 7   48.    sin 5 cos 6   

 49.    sin 9 sin    50.    sin cos   51.    cos sin   

52. Use the double-angle identity      2 2cos 2 cos sin     to verify the double-angle identity 

   2cos 2 2cos 1   . 

53. Use the double-angle identities for  cos 2  and  sin 2  to verify the double-angle identity for 

 tan 2 . 

54. Without using your calculator, show that 
2 3 6 2

2 4

 
 . 

In Exercises 55 – 72, verify the identity.  Assume all quantities are defined. 

 55.    
 2

2 tan
sin 2

1 tan








 56.    

 
2

2

1 tan
cos 2

1 tan










 

 57.      
 2

2sin cos
tan 2

2cos 1

 






 58.      2

sin cos 1 sin 2          

 59.      2
cos sin 1 sin 2         60.      

1 1
tan 2

1 tan 1 tan
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 61.      tan cot
csc 2

2

 



    

 62.    
   

 
   

cos sin
sec 2

cos sin cos sin

 


   
 

 
 

 63. 
       

 
 

2cos1 1

cos sin cos sin cos 2


    

 
 

 

 64. 
       

 
 

2sin1 1

cos sin cos sin cos 2


    

 
 

 

 65.      48sin cos 4 4cos 2 3      

 66.      48cos cos 4 4cos 2 3      

 67.      3sin 3 3sin 4sin     

 68.      4 2cos 4 8cos 8cos 1      

 69.          3 3sin 4 4sin cos 4sin cos       

 70.          2 432sin cos 2 cos 2 2cos 4 cos 6         

 71.          4 232sin cos 2 cos 2 2cos 4 cos 6         

 72.          8 6 4 2cos 8 128cos 256cos 160cos 32cos 1           (HINT: Use result for 68.) 

73. Suppose   is a Quadrant I angle with  sin x  .  Verify the following formulas. 

 (a)   2cos 1 x    (b)   2sin 2 2 1x x    (c)   2cos 2 1 2x    

74. Discuss with your classmates how each of the formulas, if any, in Exercise 73 change if we assume 

  is a Quadrant II, III, or IV angle. 

75. Suppose   is a Quadrant I angle with  tan x  .  Verify the following formulas. 

 (a)  
2

1
cos

1x
 


  (b)  

2
sin

1

x

x
 


  

 (c)   2

2
sin 2

1

x

x
 


  (d)  

2

2

1
cos 2

1

x

x
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76. Discuss with your classmates how each of the formulas, if any, in Exercise 75 change if we assume 

  is a Quadrant II, III, or IV angle. 

77. If  sin
2

x   for 
2 2

    , find an expression for  cos 2  in terms of x . 

78. If  tan
7

x   for 
2 2

    , find an expression for  sin 2  in terms of x . 

79. Let   be a Quadrant III angle with   1
cos

5
   .  Show that this is not enough information to 

determine the sign of sin
2

 
 
 

 by first assuming 
7

3
2

    and then assuming 
3

2

   .  

Compute sin
2

 
 
 

 in both cases. 

80. In Exercise 67, we had you verify an identity that expresses  sin 3  as a polynomial in terms of 

 sin  .  Can you do the same for  sin 5 ?  What about for  sin 4 ?  If not, what goes wrong? 

81. Verify the Product-to-Sum Identities. 

82. Verify the Sum-to-Product Identities. 





Chapter 4 Trigonometric Equations T4-1 
 

CHAPTER 4 
TRIGONOMETRIC EQUATIONS 

 

Figure 4.0. 1 

Chapter Outline 

4.1 Inverse Sine and Cosine Functions  

4.2 The Other Inverse Trigonometric Functions 

4.3 Inverse Trigonometric Functions and Trigonometric Equations 

4.4 Solving General Trigonometric Equations 

Introduction 

Sections 4.1 and 4.2 are all about inverse trigonometric functions — their appearances, their 

patterns, and using them to solve problems.  We establish that trigonometric functions can be 

undone and what it means to undo them.  Section 4.1 covers inverse sine and cosine functions, 

while Section 4.2 looks at the remaining inverse functions: tangent, cotangent, secant, and 

cosecant.  This leads directly into Sections 4.3 and 4.4, which are all about solving equations 

containing trigonometric functions. 

Section 4.3 will discuss solving equations containing only one trigonometric function (possibly 

used multiple times in the equation).  Section 4.4 will discuss solving equations containing 

multiple trigonometric functions using identities, factoring, and other solving techniques. 

x

y





1

1

-1

-1
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By now, you likely have a good deal of experience solving equations.  You have experience with 

equations containing operations such as polynomials, radicals (roots), rational expressions 

(fractions), exponentials, and logarithms.  Solving some equations containing trigonometric 

functions will involve only one or two steps (as with linear equations), and some will involve 

multiple steps with new twists. 

Keep in mind that, as with any function, solving for a variable buried within a function will 

involve using inverse functions.  Given the cyclical nature of trigonometric functions, simply 

using inverse functions will only locate one of possibly many viable solutions.  Much as with 

solving a quadratic equation, you will have to use your knowledge of domain and range to 

expand a primary solution into a secondary solution and even into a span of infinitely many 

solutions. 
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4.1 Inverse Sine and Cosine Functions  

Learning Objectives 

 Define the inverse sine and cosine functions.  State and apply their 

properties. 

 Find exact values of inverse sine and cosine functions, and of their 

composition with other trigonometric functions. 

 Rewrite composite functions of trigonometric and inverse sine or cosine 

functions as algebraic expressions. 

We begin Chapter 4 by finding inverses of the sine and cosine functions.  Our immediate problem is that, 

owing to their periodic nature, neither of these functions is one-to-one.  To remedy this, we restrict the 

domain of each to obtain a one-to-one function.     

The Inverse Sine Function 

We first consider the function    sinf x x .  Choosing the interval ,
2 2

    
 results in a one-to-one 

function and allows us to keep the range as  1,1 . 
Figure 4.1. 1 

 

Domain of    sinf x x  restricted to ,
2 2

    
 

Recall that the inverse of a function f is denoted by 1f  .  The sine function is denoted by the three letters 

‘sin’, so the inverse of the sine function is denoted by 1sin .  The notation for the inverse of 

   sinf x x  is    1 1sinf x x  , read ‘inverse sine of x ’.1  Another notation for the inverse of the 

 
1 Due to our convention of writing   2

sin x  as  2sin x ,   3
sin x  as  3sin x , and so on, it is easy to confuse 

 1sin x  with    1
sin x


, which is equivalent to  csc x , not the inverse of  sin x .  Pay attention to context!  
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sine function is arcsin , read ‘arc-sine’.  To understand the ‘arc’ in arcsine, recall that an inverse function, 

by definition, reverses the process of the original function.  Thus,    1 arcsinf x x   represents an angle, 

and an angle placed in the standard position on the Unit Circle corresponds to an oriented arc on the Unit 

Circle. 

Below are graphs of    sinf x x  (with restricted domain) and    1 arcsinf x x  , where the latter is 

the reflection of the former across the line y x .  This is, of course, equivalent to switching the x- and 

y-coordinates. 

Figure 4.1. 2 

 

   sinf x x , 
2 2

x
 

    

Figure 4.1. 3 

 

Reflection about the line y x  

Figure 4.1. 4 

 

   1 arcsinf x x  , 1 1x    

The table below includes values of the sine function for standard angles between 
2


  and 

2


. 

x  
2


  

3


  

4


  

6


  0 

6


 

4


 

3


 

2


 

 sin x  −1 
3

2
  

2

2
  

1

2
  0 

1

2
 2

2
 

3

2
 1 

These sine values are shown as the y-coordinates of points on the Unit Circle, as follows.  

x

y













1

1

-1

-1

 y x
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Figure 4.1. 5 

 

Based on these angles and associated sine values, we have the following values of the arcsine function. 

y  −1 
3

2
  

2

2
  

1

2
  0 

1

2
 2

2
 

3

2
 1 

 arcsin y  
2


  

3


  

4


  

6


  0 

6


 

4


 

3


 

2


 

The Inverse Cosine Function 

We next consider the function    cosg x x .  Choosing the interval  0,  results in a one-to-one 

function and allows us to keep the range  1,1 .2 

Figure 4.1. 6 

 

Domain of    cosg x x  restricted to  0,  

 
2 We choose [0, π], as opposed to [π, 2π] or others, to have a continuous interval that includes the acute angle 

measures.   
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The inverse of    cosg x x  is denoted as either    1 1cosg x x  , read ‘inverse cosine of x’, or 

   1 arccosg x x  , read ‘arc-cosine of x’.  Below are graphs of    cosg x x  (with restricted domain) 

and    1 arccosg x x  , where the latter is the reflection of the former across the line y x .  This is 

equivalent to switching the x- and y-coordinates. 

Figure 4.1. 7 

 

   cosg x x , 0 x    

Figure 4.1. 8 

 
Reflection about the 

line y x  

Figure 4.1. 9 

 

   1 arccosg x x  , 1 1x    

The following table shows values of the cosine function for standard angles between 0 and  . 

x  0 
6


 

4


 

3


 

2


 

2

3


 

3

4


 

5

6


   

 cos x  1 
3

2
 

2

2
 

1

2
 0 

1

2
  2

2
  

3

2
  −1 

These cosine values are the x-coordinates of points on the Unit Circle, as shown below. 

Figure 4.1. 10 
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From these angles and their associated cosine values, we get values for the arccosine function. 

y  1 
3

2
 

2

2
 

1

2
 0 

1

2
  2

2
  

3

2
  −1 

 arccos y  0 
6


 

4


 

3


 

2


 

2

3


 

3

4


 

5

6


   

Finding Values of Inverse Sine and Inverse Cosine Functions 

We move on to finding values of inverse sine (arcsine) and inverse cosine (arccosine) functions.  

Domains and ranges are critical in determining values for each of these functions.  Keep the following in 

mind, as well as graphs of the arcsine and arccosine, when evaluating function values.   

Definition 4.1. The Arcsine and Arccosine Functions: 

 For 1 1x   ,  arcsin x  is the angle   such that 
2 2

     and  sin x  . 

The function  arcsiny x  has domain  1,1  and range ,
2 2

    
. 

 For 1 1x   ,  arccos x  is the angle   such that 0     and  cos x  . 

The function  arccosy x  has domain  1,1  and range  0, . 

Example 4.1.1. Find the exact values of the following. 

 1. 
1

arccos
2

 
 
 

 2. 
2

arcsin
2

 
  
 

 3. 1 2
cos

2
  

  
 

 4. 1 1
sin

2
   
 

 

Solution. 

1. To find 
1

arccos
2

 
 
 

, we need to find the angle  , in radians, with 0     and   1
cos

2
  . 

Figure 4.1. 11 

 

We know 
3

   meets these criteria, so 
1

arccos
2 3

   
 

. 
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2. The value of 
2

arcsin
2

 
  
 

 is the angle  , in radians, with 
2 2

     and   2
sin

2
  . 

Figure 4.1. 12 

 

Since 
2

sin
4 2

   
 

 and 
2 4 2

  
   , we have 

2
arcsin

2 4

 
  

 
. 

3. We begin by observing that 1 2
cos

2
  

  
 

 is equivalent to 
2

arccos
2

 
  
 

. 

Figure 4.1. 13 

 

The angle 1 2
cos

2
   
   

 
 lies in the interval  0,  with   2

cos
2

   .  Our answer is 

1 2 3
cos

2 4

  
   
 

. 

4. To find 1 1
sin

2
   
 

, we seek the angle   in the interval ,
2 2

    
 with   1

sin
2

   . 
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Figure 4.1. 14 

 

The answer is 
6

   , so that 1 1
sin

2 6

     
 

 

  

Properties of the Inverse Sine and Inverse Cosine Functions 

Recall that for a function f  and its inverse 1f  ,   1f f x x   and   1f f x x  .  Since  siny x , 

2 2
x

 
   , and  arcsiny x , 1 1x   , are inverses of each other, as are  cosy x , 0 x   , and 

 arccosy x , 1 1x   , the following properties are a direct consequence. 

Inverse Properties of the Arcsine and Arccosine Functions 

   arcsin sin x x  provided 
2 2

x
 

     

   arccos cos x x  provided 0 x    

   sin arcsin x x  provided 1 1x    

   cos arccos x x  provided 1 1x    

We use these properties, when applicable, in evaluating compositions of inverse trigonometric functions 

with trigonometric functions. 

Example 4.1.2. Find the exact values of the following. 

 1. arccos cos
6

  
  
  

 2. 1 11
cos cos

6
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Solution. 

1. Since 0
6

   , we could simply invoke the property   arccos cos x x , provided 0 x   , 

to get arccos cos
6 6

      
  

.   

Knowing the exact value of cos
6

 
 
 

, we can also solve this problem as follows. 

 
3

arccos cos arccos
6 2

 
              

 

where   is the angle with 0     and   3
cos

2
  .  Thus, 

6

   so that 

 
3

arccos cos arccos
6 2 6

               
 

2. Since 
11

6


 does not fall between 0 and  , the inverse property does not apply.  But we do know 

the exact values of 
11

cos
6

 
 
 

 and 1 3
cos

2
  
  
 

.  Hence, 

 1 111 3
cos cos cos

6 2 6

                 
 

  

Most of the common errors encountered in dealing with the inverse trigonometric functions come from 

the need to restrict the domains of the original functions so that they are one-to-one.  One instance of this 

phenomenon is the fact that 
11

arccos cos
6 6

      
  

 as opposed to 
11

6


, demonstrated in the previous 

example.  We move on to the next example, where we reverse the order and evaluate compositions of 

trigonometric functions with inverse trigonometric functions. 

Example 4.1.3. Find the exact values of the following. 

 1. 1 3
cos cos

5
    
  

 2. 
3

sin arccos
5
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Solution. 

1. One way to simplify 1 3
cos cos

5
    
  

 is to use the property that   cos arccos x x , provided 

1 1x   .  Since 
3

5
  is between −1 and 1, we find 1 3 3

cos cos
5 5

      
  

, and we are done. 

For a deeper understanding, we solve this problem a second way, using the meaning of the 

inverse cosine function.  Let 1 3
cos

5
     

 
.  Then 0     and   3

cos
5

   .  Thus,  

  1 3 3
cos cos cos

5 5
       

  
 

2. To evaluate 
3

sin arccos
5

    
  

, as in the previous example, we let 
3

arccos
5

    
 

 so that 

  3
cos

5
    for some  , where 0    .  Since  cos 0  , we can narrow this down a bit 

and conclude that 
2

    , so that   represents an angle in Quadrant II.  We move on to 

evaluating  3
sin arccos sin

5
     

  
. 

A geometric approach3 to evaluating  sin   is to sketch the angle  , along with its 

corresponding reference angle   .  We then introduce a ‘reference triangle’ in Quadrant II.  

Since   3
cos

5
   , the reference triangle will have   3

cos
5

   .  We label the adjacent side 

with length 3 and the hypotenuse with length 5. 

 
3 For an approach that uses the Pythagorean identity, see the next example. 
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Figure 4.1. 15 

 

The Pythagorean Theorem can be used to find the length b  of the opposite side. 

 

2 2 2

2

As a length,  is positive.

3 5

16

4

b

b

b b

 


     

 

In the reference triangle,   4
sin

5 5

b    .  Since sine is positive in Quadrant II, 

    4
sin sin

5
      , and we have 

 
 3

sin arccos sin
5

4

5

       



 

  

The last two examples in this section have arguments containing a variable.  In finding an equivalent 

algebraic expression for that variable, we also determine the domain on which the equivalence is valid. 

Example 4.1.4. Rewrite   tan arccos x  as an algebraic expression of x  and state the values of x  

for which the equivalence holds. 

Solution. We begin by letting  arccos x  .  Then  cos x   where 0     and  

     tan arccos tanx   

One approach to finding  tan   is to use the quotient identity    
 

sin
tan

cos





 .  We have  cos x  , 

and can use a Pythagorean identity to determine  sin  . 

 

   
 

 

2 2

2 2

2

sin cos 1

sin 1

sin 1

x

x

 





 

 

  

 

x

y

3

5

b

  3, y
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Since 0    , we find  sin 0  , and thus   2sin 1 x   .  Then    
 

2sin 1
tan

cos

x

x







  . 

To determine the values of x  for which the equivalence is valid, we consider our substitution 

 arccos x  .  Since the domain of  arccos x   is  1,1 , we must restrict 1 1x   .  Additionally,  

21 x

x


 is not defined for 0x  , so we discard this value from the interval  1,1 .  Hence, 

  
21

tan arccos
x

x
x


  for x  in    1,0 0,1  . 

  

Example 4.1.5. Rewrite   cos 2arcsin x  as an algebraic expression of x  and state the values of x  

for which the equivalence holds. 

Solution. We begin by letting  arcsin x   so that   lies in the interval ,
2 2

    
 with  sin x  .  

Our goal is to express     cos 2arcsin cos 2x   in terms of x .  We have three choices for rewriting 

 cos 2 :    2 2cos sin  ,  22cos 1  , or  21 2sin  .  Since we know that  sin x  , it is easiest 

to use the third form. 

 

    
 2

2

cos 2arcsin cos 2

1 2sin

1 2

x

x







 

 

 

Since  arcsin x  is defined only for 1 1x   ,    2cos 2arcsin 1 2x x   holds only for 1 1x   , or the 

interval  1,1 . 

  

In the previous example, the equivalence    2cos 2arcsin 1 2x x   is valid only for 1 1x   , since 

 arcsin x  is defined for 1 1x   .  This is similar to the fact that the equivalence  2

x x  is valid 

only for 0x  , since x  is defined for 0x  .  Keep in mind that it pays to be careful when determining 

the intervals where equivalences are valid. 
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4.1 Exercises 

In Exercises 1 – 21, find the exact value or state that it is undefined.  Give your answer in radians. 

 1.  arcsin 1  2. 1 3
sin

2
  

  
 

 3. 1 2
sin

2
  

  
 

 

 4. 
1

arcsin
2

  
 

 5.  arcsin 0  6. 
1

arcsin
2

 
 
 

  

 7.  1sin 2  8. 1 2
sin

2
  
  
 

 9. 
3

arcsin
2

 
  
 

 

 10.  arcsin 1   11.  arccos 2  12.  1cos 1   

 13. 1 3
cos

2
  

  
 

 14. 
2

arccos
2

 
  
 

 15.  1cos 3  

 16. 1 1
cos

2
   
 

 17.  arccos 0  18. 
1

arccos
2

 
 
 

 

 19. 1 2
cos

2
  
  
 

 20. 1 3
cos

2
  
  
 

 21.  arccos 1  

In Exercises 22 – 47, find the exact value or state that it is undefined. 

 22. 
1

sin arcsin
2

  
  
  

 23. 1 2
sin sin

2


  
      

 24. 1 3
sin sin

5
  
  
  

 

 25.   sin arcsin 0.42  26. 
5

sin arcsin
4

  
  
  

 27. 1 2
cos cos

2


  
      

 

 28. 
1

cos arccos
2

    
  

 29. 1 5
cos cos

13
  
  
  

 30.   cos arccos 0.998  

 31.   cos arccos   32. arcsin sin
6

  
  
  

 33. arcsin sin
3

    
  

 

 34. 1 3
sin sin

4

   
  
  

 35. 1 11
sin sin

6

   
  
  

 36. 
4

arcsin sin
3

  
  
  

 

 37. 1cos cos
4

   
  
  

 38. 
2

arccos cos
3

  
  
  

 39. 1 3
cos cos

2

   
  
  

 

 40. 1cos cos
6

     
  

 41. 
5

arccos cos
4

  
  
  

 42. 
1

sin arccos
2
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 43. 1 3
sin cos

5
  
  
  

 44. 
5

cos arcsin
13

    
  

 45. 1 5
sin sin

13 4

     
  

 

 46. 
4

sin 2arcsin
5

    
  

 47. 
3

cos 2arcsin
5

  
  
  

 

In Exercises 48 – 57, rewrite the quantities as equivalent algebraic expressions of x  and state the values 

of x  for which the equivalence holds. 

 48.   sin arccos x  49.   1tan sin x  50.   1sin 2cos x  

 51.   sin arccos 2x  52. sin arccos
5

x  
  
  

 53. 1cos sin
2

x  
  
  

 

 54.   sin 2arcsin 7x  55. 1 3
sin 2sin

3

x
  
      

 56.   cos 2arcsin 4x  

 57.     1 1sin sin cosx x   

58. For  sin
2

x  , 
2 2

    , verify the identity  
2

1 4
sin 2 sin

2 2

x x x       
 

. 

59. Show that    arcsin arccos
2

x x


   for 1 1x   . 

60. Discuss with your classmates why 1 1
sin 30

2
    
 

 . 

61. Why do the functions    1sinf x x  and    1cosg x x  have different ranges? 

62. Since the functions  cosy x  and  1cosy x  are inverse functions, why is 1cos cos
6

     
  

 not 

equal to 
6


 ? 
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4.2 The Other Inverse Trigonometric Functions  

Learning Objectives 

 Define the inverse tangent, cotangent, secant, and cosecant functions.  State 

and apply their properties. 

 Find exact values of the inverse tangent, cotangent, secant, and cosecant 

functions, and of their composition with other trigonometric functions. 

 Rewrite composite functions of trigonometric and inverse tangent, 

cotangent, secant, and cosecant functions as algebraic expressions. 

As with the sine and cosine functions, the remaining four trigonometric functions are not one-to-one.  

This is a necessary requirement for a function to have an inverse, so we will restrict the domain of each 

function to make it one-to-one before identifying its inverse.     

The Inverse Tangent Function 

The function    tanf x x , with its domain restricted to the interval ,
2 2

   
 

, is a one-to-one function.  

The graph of its inverse is the reflection of the graph of    tanf x x , with restricted domain, about the 

line y x .  The inverse,    1 1tanf x x  , read ‘inverse tangent of x ’, may also be denoted as 

 arctan x , read ‘arc-tangent of x ’. 

Figure 4.2. 1 

 

   tanf x x , 
2 2

x
 

    

reflect across y x  

switch x- and y-coordinates 

Figure 4.2. 2 

 

   1 arctanf x x  , x     
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Note that the marked points , 1
4

   
 

,  0,0 , and ,1
4

 
 
 

 on the graph of    tanf x x , after 

swapping x- and y-coordinates to reflect the graph of  f x  about the line y x , become the marked 

points 1,
4

   
 

,  0,0 , and 1,
4

 
 
 

, respectively, on the graph of    1 arctanf x x  .4  Also note that 

the vertical asymptotes 
2

x


   and 
2

x


  from the graph of  f x  become the horizontal asymptotes 

2
y


   and 

2
y


 , respectively, on the graph of  1f x . 

The following table shows values of the tangent function for angles having standard reference angles and 

lying between 
2


  and 

2


.  Note that 

2




   
 

 means   approaches 
2


  from the right side of 

2


 , 

and 
2




   
 

 means   approaches 
2


 from the left side of 

2


. 

  2

 
   
 

 
3


  

4


  

6


  0 

6


 

4


 

3


 

2

 
   
 

 

 tan      3  1  
3

3
  0 

3

3
 1 3    

From these angles and their associated tangent values, we get the following values of arctangent. 

x     3  −1 
3

3
  0 

3

3
 1 3    

 arctan x  
2


   

3


  

4


  

6


  0 

6


 

4


 

3


 

2


  

The Inverse Cotangent Function 

The function    cotg x x , with its domain restricted to the interval  0, , is a one-to-one function.  

The graph of its inverse is the reflection of the graph of    cotg x x , with restricted domain, about the 

line y x .  The inverse,    1 1cotg x x  , read ‘inverse cotangent of x ’, may also be denoted as 

 arccot x , read ‘arc-cotangent of x ’. 

 
4 To avoid ‘cluttering’, we have not shown the tangent and arctangent functions graphed together with the line y=x. 
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Figure 4.2. 3 

 

   cotg x x , 0 x    

reflect across y x  

switch x- and y-coordinates 

Figure 4.2. 4 

 

   1 arccotg x x  , x     

Note that the marked points ,1
4

 
 
 

, ,0
2

 
 
 

, and 
3

, 1
4

  
 

 on the graph of    cotg x x , after 

swapping x- and y-coordinates to reflect the graph of  g x  about the line y x , become the marked 

points 1,
4

 
 
 

, 0,
2

 
 
 

, and 
3

1,
4

  
 

, respectively, on the graph of    1 arccotg x x  .5  Also note that 

the vertical asymptotes 0x   and x   from the graph of  g x  become the horizontal asymptotes 

0y   and y  , respectively, on the graph of  1g x . 

The following table shows values of the cotangent function for angles having standard reference angles 

and lying between 0 and  . 

  0  
6


 

4


 

3


 

2


 

2

3


 

3

4


 

5

6


    

 cot     3  1 
3

3
 0 

3

3
  −1 3     

From these angles and their associated cotangent values, we get the following values of arccotangent. 

x    3  1 
3

3
 0 

3

3
  −1 3     

 arccot x  0  
6


 

4


 

3


 

2


 

2

3


 

3

4


 

5

6


   

 
5 Again, to avoid ‘cluttering’, we have not shown the cotangent and arccotangent functions graphed together with 
the line y x . 
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Finding Values of Inverse Tangent and Inverse Cotangent Functions 

Following is a summary of domains and ranges for inverse tangent (arctangent) and inverse cotangent 

(arccotangent) functions, along with definitions that will prove helpful in determining function values. 

Definition 4.2. The Arctangent and Arccotangent Functions: 

 For any real value x ,  arctan x  is the angle   such that 
2 2

     and  tan x  . 

The function  arctany x  has domain  ,   and range ,
2 2

   
 

. 

 For any real value x ,  arccot x  is the angle   such that 0     and  cot x  . 

The function  arccoty x  has domain  ,   and range  0, . 

Example 4.2.1. Find the exact values of the following. 

 1.  arctan 3  2.  arccot 3  

Solution. 

1. To find  arctan 3 , we need to find the angle   such that 
2 2

     and  tan 3  .  We 

know 
3

   meets these criteria, so  arctan 3
3


 . 

2. We let  arccot 3   .  Then, we need to find the angle  , 0    , with  cot 3   .   

We know 
5

6

   meets these criteria, so   5
arccot 3

6


  . 

  

Properties of the Inverse Tangent and Cotangent Functions 

Noting that  tany x , 
2 2

x
 

   , and  arctany x , x    , are inverse functions, as well as 

 coty x , 0 x   , and  arccoty x , x    , we have the following properties. 

Inverse Properties of the Arctangent and Arccotangent Functions 

   tan arctan x x  for all real numbers x  

   cot arccot x x  for all real numbers x  

   arctan tan x x  provided 
2 2

x
 

    

   arccot cot x x  provided 0 x    
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Example 4.2.2. Find the exact values of the following. 

 1.   cot arccot 5  2. 1 3
sin tan

4
    
  

 

Solution.  

1. Since   cot arccot x x  for all real values of x , we have   cot arccot 5 5   . 

For a deeper understanding, we solve this problem a second way, using the definition of the 

inverse cotangent function.  If we let  arccot 5   , then 0     and  cot 5   .  Hence, 

 
    cot arccot 5 cot

5

 

 
 

2. We start by letting 1 3
tan

4
     

 
, from which   3

tan
4

    with 
2 2

    .  Since 

 tan 0  , we know in fact that 0
2

     and have  1 3
sin tan sin

4
       

.  We proceed 

by using   3
tan

4
    to determine  sin  . 

 One way to find the value of  sin   is to use the Pythagorean identity 

   2 21 cot csc    since this relates the reciprocals of  tan  and  sin  , and is valid 

for 0
2

    . 

 

   

   

 

 

2 2

2
2

2

3
  

3

1

 fro

s

m t

c

an

cot c c

4
1 csc

3

25
sc

9
5

csc

4

 









 

    
 



 




 

With 0
2

    , we must have   5
csc

3
    so that   3

sin
5

   . 

 Another approach is to use geometry to determine  sin  .  With   3
tan

4
    and 

0
2

    , we place a reference triangle in Quadrant IV.  We label the opposite side 

with length 3 and the adjacent side with length 4. 
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Figure 4.2. 5 

 

The Pythagorean Theorem can be used to find the length h  of the hypotenuse. 

 

2 2 2

2

As a length,  is positive.

3 4

25

5 h

h

h

h

 




 

Since sine is negative in Quadrant IV,   3
sin

5
   . 

Using either of the above methods, we get   3
sin

5
   , so that 

 
 1 3

sin tan sin
4

3

5

       

 

 

  

Before moving on to inverse secant and cosecant functions, we have one last example of compositions 

involving inverse tangent and cotangent functions; this time with arguments containing a variable. 

Example 4.2.3. Rewrite the following as algebraic expressions of x  and state the values of x  for 

which they hold. 

 1.   tan 2arctan x  2.   1cos cot 2x  

Solution. 

1. Let  arctan x  .  Then 
2 2

     and  tan x  , so that     tan 2arctan tan 2x  .  

Using the double-angle identity for tangent, we get 

y

3
h

4 x

 

  4, 3
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 2

2

tan 2arctan tan 2

2 tan

1 tan

2

1

x

x

x














 

We note that this fraction is not defined if 21 0x  , which occurs when 1x   .  Hence, the 

equivalence    2

2
tan 2arctan

1

x
x

x



 holds for all x  in      , 1 1,1 1,     .  

2. To write   1cos cot 2x  as an algebraic expression of x , we first let  1cot 2x   so that 

    1cos cot 2 cosx   .  Then 0     and  cot 2x  . 

We next use the identity    
 

cos
cot

sin





 , rewriting it as      cos cot sin    to get 

 

    
   
 

1cos cot 2 cos

cot sin

2 sin

x

x



 



 





 

We still need  sin   in terms of x .  Since cosecant is the reciprocal of sine, and we know 

 cot 2x  , we use the Pythagorean identity    2 21 cot csc    to rewrite  sin   in terms 

of x . 

 

   
   
 

2 2

2 2

2

1 cot csc

1 2 csc

csc 4 1

x

x

 





 

 

  

 

Since   is between 0 and π,  csc 0  .  Thus,   2csc 4 1x    and  
2

1
sin

4 1x
 


.  

Finally, 

 
    1

2

cos cot 2 2 sin

2

4 1

x x

x

x

 




 

This fraction is defined for all values of x , so   1

2

2
cos cot 2

4 1

x
x

x

 


 for all real numbers x . 
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The Inverse Secant Function 

A portion of the graph of the secant function follows. 

Figure 4.2. 6 

 

 secy x  

For the secant, no single continuous piece of its graph covers its entire range of    , 1 1,   .  Thus, 

to achieve a one-to-one function, we settle for a piecewise approach in which we choose one piece to 

cover the top of the range,  1, , and another piece to cover the bottom,  , 1  .  We restrict the 

domain to 0, ,
2 2

     
     
 , corresponding to that of cosine, and reflect the graph of    secf x x  

about the line y x  to obtain the graph of    1 1secf x x  , read ‘inverse secant of x ’, or 

   1 arcsecf x x  , read ‘arc-secant of x ’. 

Figure 4.2. 7 

 

   secf x x  on 0, ,
2 2

     
     
  

reflect across y x  

 
switch x- and y-coordinates 

Figure 4.2. 8 

 

   1 arcsecf x x  , 1x   

Note that the marked points  0,1 , ,2
3

 
 
 

, 
2

, 2
3

  
 

, and  , 1   on the graph of    secf x x , after 

swapping x- and y-coordinates to reflect the graph of  f x  about the line y x , become the marked 
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points  1,0 , 2,
3

 
 
 

, 
2

2,
3

  
 

, and  1, , respectively, on the graph of    1 arcsecf x x  .6  What 

observations can you make regarding the asymptotes? 

For both inverse secant and inverse cosecant functions, we forego posting a table of values, as we have 

done for the other four inverse functions, since we often use sine and cosine to determine values of these 

functions.  For extra practice, you might try creating such a table yourself. 

The Inverse Cosecant Function 

Following is a portion of the graph of the cosecant function. 

Figure 4.2. 9 

 

 cscy x  

To obtain a one-to-one function for determining the inverse, we restrict    cscg x x  to 

,0 0,
2 2

          
 , corresponding to restrictions for the sine, and reflect about the line y x  to obtain 

   1 1cscg x x  , read ‘inverse cosecant of x ’, and also referred to as  arccsc x , read ‘arc-cosecant of 

x ’. 

 
6 To avoid ‘cluttering’, we have not shown the secant and arcsecant functions graphed together with the line y=x. 
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Figure 4.2. 10 

 

   cscg x x  on ,0 0,
2 2

          
  

reflect across y x  

 
switch x- and y-coordinates 

Figure 4.2. 11 

 

   1 arccscg x x  , 1x   

Note the marked points on each graph, along with asymptotes.  What observations can you make about 

the locations of points and asymptotes in moving from one graph to the next?  Also note that the domain 

of both the arcsecant and arccosecant functions is    , 1 1,   , and is often written as  : 1x x  . 

Finding Values of Inverse Secant and Inverse Cosecant Functions 

In finding values of inverse secant (arcsecant) and inverse cosecant (arccosecant) functions, domains and 

ranges are critical, as are the following definitions. 

Definition 4.3. The Arcsecant and Arccosecant Functions: 

 For 1x    or 1x  ,  arcsec x  is the angle   such that 0
2

   or 
2

     and 

 sec x  . 

The function  arcsecy x  has domain    , 1 1,    and range 0, ,
2 2

     
     
 . 

 For 1x    or 1x  ,  arccsc x  is the angle   such that 0
2

     or 0
2

   and 

 csc x  . 

The function  arccscy x  has domain    , 1 1,    and range ,0 0,
2 2

          
 . 

Example 4.2.4. Find the exact values of the following. 

 1.  arcsec 2  2.  1csc 2   
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Solution. 

1. To find  arcsec 2 , we look for an angle   such that 0
2

   or 
2

     and  sec 2  .  It 

may help us out to convert to cosine, as follows: 

 

 

 

 
2

 recipr

s

ocal
o

 i e

ec 2

1
d nt y2

c s

1
cos

it













   

Since 
1

cos
3 2

   
 

, and 0
3 2

 
  , we find 

3

  .  Then,  arcsec 2
3

  . 

2. We let  1csc 2    , so that 0
2

     or 0
2

   and  csc 2   .  Again, we use a 

reciprocal identity, this time to convert to sine: 

 

 

 

 

csc 2

1
2

sin

1
sin

2







 

 

 

 

The value of   that works here is 
6


  since 

1
sin

6 2

    
 

 and 0
2 6

 
    .  Thus, we have 

 1csc 2
6

    . 

  

Properties of the Inverse Secant and Inverse Cosecant Functions 

Since  secy x , 0
2

x


   or 
2

x
   , and  arcsecy x , 1x  , are inverse functions, as well as 

 cscy x , 0
2

x


    or 0
2

x


  , and  arccscy x , 1x  , we have the following properties. 

Inverse Properties of the Arcsecant and Arccosecant Functions 

   sec arcsec x x  provided 1x    

   csc arccsc x x  provided 1x   

   arcsec sec x x  provided 0
2

x


   or 
2

x
    

   arccsc csc x x  provided 0
2

x


    or 0
2

x
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Example 4.2.5. Find the exact values of the following. 

 1. 1 5
sec sec

4

   
  
  

 2.   cot arccsc 3  

Solution. 

1. Since 
5

4


 does not fall between 0 and 

2


, or between 

2


 and  , we cannot use the inverse 

property stated above.  Instead, we start by evaluating the expression: 

  1 15
sec sec sec 2

4

       
  

 

If we let  1sec 2    then  sec 2    and 0
2

   or 
2

    .  Since 

3 1
cos

4 2

    
 

 and 
3

2 4

    , we have 
3

4

  .  Thus, 

 

 1 15
sec sec sec 2

4

3

4






       
  





  

2. To simplify   cot arccsc 3 , we let  arccsc 3   .  Then  csc 3    and, being negative,   

lies in the interval ,0
2

   
.  We next find the value of  cot   by applying a Pythagorean 

identity. 

 

   
   
 
 

2 2

22

2

          Pythagorean id

2

1 cot csc

1 cot 3

cot 8

8

entity

cot 2

 







 

  



   

 

Since 0
2

    , we note that  cot 0   and have     cot arccsc 3 cot 2 2    . 

  

As we did with inverse tangent and cotangent functions, we finish off the inverse secant and cosecant 

functions by looking at compositions that contain a variable. 
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Example 4.2.6. Rewrite the following as algebraic expressions of x  and state the values of x  for 

which they hold. 

 1.   tan arcsec x  2.   1cos csc 4x  

Solution. 

1. To write   tan arcsec x  as an algebraic expression of x , we begin by letting  arcsec x  .  

Then  sec x   for   in 0, ,
2 2

     
     
  and we have     tan arcsec tanx  . 

To relate  sec   to  tan  , we use a Pythagorean identity. 

 

   
 

 

2 2

2 2

2

         Pythagorea

1

tan 1 sec

ta 1

n ide t

n

n i y

tan

t

x

x

 





 

 

  

 

Either case may hold, depending on the value of the angle  .  If   lies in 0,
2

 
 

 then 

 tan 0  ; if, on the other hand,   lies in ,
2

  
  

 then  tan 0  .  As a result, we get a 

piecewise defined function for  tan  . 

  
2

2

1, if 0
2tan

1, if 
2

x

x




  

    
   


 

Now, we need to determine what these conditions on   mean for  secx  .  When 0
2

  , 

then 1x  ; when 
2

    , we find 1x   .  Therefore, 

   
2

2

1, if 1
tan arcsec

1, if 1

x x
x

x x

   
   

 

2. To simplify   1cos csc 4x , we start by letting  1csc 4x  .  Then  csc 4x   for   in 

,0 0,
2 2

          
 , and we have     1cos csc 4 cosx   .  From  csc 4x  , we get 

  1
sin

4x
  .  Then, to find  cos  , we again use a Pythagorean identity. 
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2 2

2
2

2
2

2
2

2

2

2

sin cos 1

1
co

         

1

1

       

s
4

1
cos 1

1

y

6

16 1
cos

6

1

a

6 1
co

 P thagore n identi

s
16

ty

x

x

x

x

x

x

 









 

    
 

 





 

 

Recalling that 2x x , we get  
216 1

cos
4

x

x
 

  .  Since   belongs to ,0 0,
2 2

          
 , 

we know  cos 0   and so  
216 1

cos
4

x

x
 

 .  Hence,   
2

1 16 1
cos csc 4

4

x
x

x
 

 .  (The 

absolute value here is necessary since x  could be negative, as will be verified shortly.) 

To find the values of x  for which this equality holds, recall that  1csc 4x  is defined only when 

4 1x  .  We solve this inequality for x  as follows. 

 

4 1

4 1 or 4 1

1 1
 or 

4 4

x

x x

x x



  

  

 

Thus,   
2

1 16 1
cos csc 4

4

x
x

x
 

  holds for all x  in 
1 1

, ,
4 4

          
 . 
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4.2 Exercises 

In Exercises 1 – 30, find the exact value in radians or state that it is undefined. 

 1.  arctan 3  2.  1tan 1   3. 1 3
tan

3
  

  
 

 

 4.  arctan 0  5. 
3

arctan
3

 
  
 

 6.  1tan 1  

 7.  1tan 3  8.  1cot 3   9.  arccot 1  

 10. 
3

arccot
3

 
  
 

 11.  1cot 0  12. 1 3
cot

3
  
  
 

 

 13.  arccot 1  14.  arccot 3  15.  arcsec 2  

 16.  1csc 2  17.  1sec 2  18.  1csc 2  

 19. 
2 3

arcsec
3

 
  
 

 20. 
2 3

arccsc
3

 
  
 

 21.  1sec 1  

 22.  arccsc 1  23.  arcsec 2  24.  1sec 2   

 25. 1 2 3
sec

3
  

  
 

 26.  1sec 1   27.  1csc 2   

 28.  arccsc 2  29. 
2 3

arccsc
3

 
  
 

 30.  arccsc 1  

In Exercises 31 – 72, find the exact value or state that it is undefined. 

 31.   1tan tan 1   32.   1tan tan 3  33. 
5

tan arctan
12

  
  
  

 

 34.   tan arctan 0.965  35.   1tan tan 3  36.   cot arccot 1  

 37.   1cot cot 3   38. 
7

cot arccot
24

    
  

 39.   1cot cot 0.001   
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 40. 
17

cot arccot
4

  
  
  

 41. arctan tan
3

  
  
  

 42. 1tan tan
4

     
  

 

 43.   1tan tan   44. arctan tan
2

  
  
  

 45. 1 2
tan tan

3

   
  
  

 

 46. arccot cot
3

  
  
  

 47. 1cot cot
4

     
  

 48.   arccot cot   

 49. 1cot cot
2

   
  
  

 50. 
2

arccot cot
3

  
  
  

 51.   1sec sec 2  

 52.   sec arcsec 1  53. 1 1
sec sec

2
  
  
  

 54.   1sec sec 0.75  

 55.   sec arcsec 117  56.   1csc csc 2  57. 
2 3

csc arccsc
3

  
      

 

 58. 1 2
csc csc

2


  
      

 59.   csc arccsc 1.0001  60. csc arccsc
4

  
  
  

 

 61. 1sec sec
4

   
  
  

 62. 
4

arcsec sec
3

  
  
  

 63. 1 5
sec sec

6

   
  
  

 

 64. 1sec sec
2

     
  

 65. 
5

arcsec sec
3

  
  
  

 66. arccsc csc
6

  
  
  

 

 67. 1 5
csc csc

4

   
  
  

 68. 1 2
csc csc

3

   
  
  

 69. arccsc csc
2

    
  

 

 70. 
11

arccsc csc
6

  
  
  

 71. 1 11
sec sec

12

   
  
  

 72. 
9

arccsc csc
8

  
  
  

 

In Exercises 73 – 100, find the exact value or state that it is undefined. 

 73.   sin arctan 2  74.   1sin cot 5  75.   cos arctan 7  

 76.   1cos cot 3  77. 1 2 5
tan sin

5


  
      

 78. 
1

tan arccos
2
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 79.   tan arccot 12  80. 
12

cot arcsin
13

  
  
  

 81. 1 3
cot cos

2


  
      

 

 82.   1cot tan 0.25  83.   3
tan arctan 3 arccos

5

     
  

 84.   1sin 2 tan 2  

 85.   cot 2arccot 5  86. 
 arctan 2

sin
2

 
 
 

 87.   1sin csc 3   

 88.   1cos sec 5  89. 
5

tan arcsec
3

  
  
  

 90.   1cot csc 5  

 91. 
3

sec arccos
2

  
      

 92. 1 12
sec sin

13
    
  

 93.   sec arctan 10  

 94. 1 10
sec cot

10


  
      

 95.   csc arccot 9  96. 
3

csc arcsin
5

  
  
  

 

 97. 1 2
csc tan

3
    
  

 98.     cos arcsec 3 arctan 2  99. 1 13
sin 2csc

5
  
  
  

 

100. 1 25
cos 2sec

7
  
  
  

 

In Exercises 101 – 110, rewrite the quantities as equivalent algebraic expressions of x  and state the 

values of x  for which the equivalence holds. 

101.   1cos tan x  102.   1sin 2 tan x  103.   cos 2arctan x  

104.   1cos tan 3x  105.   sec arctan x  106.   csc arccos x  

107.     cos arcsin arctanx x  108.   1tan 2sin x  109.  1
sin arctan

2
x 

 
 

 

110.      sec arctan 2 tan arctan 2x x  

111. For  tan
7

x  , 
2 2

    , verify the identity   2

1 1 1 7
sin 2 arctan

2 2 2 7 49

x x

x
        

. 

112. For  sec
4

x  , 0
2

  , verify the identity   2 4
4 tan 4 16 4arccosx

x
        

 
. 
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4.3 Inverse Trigonometric Functions and Trigonometric 
Equations 

Learning Objectives 

 Use technology to find approximate values of inverse trigonometric 

functions. 

 Find domains of inverse trigonometric functions. 

 Use inverse trigonometric functions to solve applications. 

 Use inverse trigonometric functions to solve for angles in right triangles. 

 Use inverse trigonometric functions to solve trigonometric equations. 

 Find all solutions to trigonometric equations. 

 Find solutions to trigonometric equations in a given interval. 

We begin with a look at technology (in the form of calculators) that will help us find approximate values 

of inverse trigonometric functions.  In the next few sections this skill will prove useful, particularly in 

allowing us to use inverse trigonometric functions in solving applications. 

Using a Calculator to Find Inverse Trigonometric Function Values 

On most calculators, only the arcsine, arccosine, and arctangent functions are available, and they are 

labeled as 1sin , 1cos , and 1tan  , respectively.  If we are asked to find an arccotangent, arcsecant, or 

arccosecant value, we may need to employ some ingenuity, as the next example illustrates. 

Example 4.3.1. Use a calculator to approximate the following values to four decimal places. 

 1.  arccot 2  2.  1sec 5  3.  1cot 2   4. 
3

arccsc
2

  
 

 

Solution. 
1. We will need to change  arccot 2  to arctangent so that we can use the inverse tangent button on 

a calculator.  We let  arccot 2  ; then 0     and  cot 2  .  Since  cot 0  ,   must 

be in Quadrant I.  It follows that 

  

 

Cotangent

2

 is reciprocal of
1

g2
t

t

 ta e
an

1

n

an

nt








   .
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Since   is in Quadrant I, 
1

arctan
2

    
 

.  After verifying our calculator is in radian mode, we 

find 1 1
tan 0.4636

2
     

 
.  So  arccot 2 0.4636    radians. 

2. To evaluate  1sec 5 , we will restate the problem so we can use the button for inverse cosine on 

a calculator.  If we let  1sec 5   , then 0
2

   or 
2

    and  sec 5  , from which 

  

 

Secant is recip

5

rocal of
1

s5
c

c

 c n
os

1

o

o

i

s

e








   .
 

Since  sec 0  ,   must be in Quadrant I.  Thus, 1 1
cos

5
     

 
.  Using a calculator, 

1.3694   or  1sec 5 1.3694   radians. 

3. For  1cot 2  , we use the inverse tangent and begin by letting  1cot 2    .  Then 0     

and  cot 2   .  Since  cot 0  ,   must be in the second quadrant; 
2

    .  Also, 

 
 

 

Cotangent

2

 is reciprocal of
1

  tang
t

ent2  
an

1
tan





 

 

.
 

We must resolve the issue that 1 1
tan

2
   
 

 is in Quadrant IV while  1cot 2   is in Quadrant II.  

Our final answer needs to be in Quadrant II.  We let 1 1
tan

2
     

 
; then   1

tan
2

   , 

0
2

    .  Noting that the period of the tangent function is   and    tan tan  , the 

angles   and   are exactly   units apart.  It follows that     , as illustrated below. 
Figure 4.3. 1 

 

x

y

   1cot 2  
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Using a calculator, 1 1
tan 2.6779

2
        

 
.  Hence,  1cot 2 2.6779     radians.   

4. To evaluate 
3

arccsc
2

  
 

, we use the inverse sine function.  We let 
3

arccsc
2

    
 

and have 

 

 

 

 

Cosecant i

3

c

s reci
n

pro a

3
sc

2
1

s
3

si
c l o

2

2
s

ine

in

f  







 

 

 

   .  

For negative arguments, both inverse cosecant and inverse sine values are between  
2


  and 0, 

so 1 2
sin

3
     

 
.  Using a calculator, we find 0.7297   , or 

3
arccsc 0.7297

2
    
 

 radians. 

  

Domain of Inverse Trigonometric Functions 

Example 4.3.2. Find the domain of the following functions. 

 1.   1
arccos

2 5

x
f x

    
 

 2.    13tan 4g x x  3.   2
arccoth x

x
   

 
 

Solution.  

1. Since the domain of  arccosy x  is 1 1x   , to find the domain of   1
arccos

2 5

x
f x

    
 

, 

we set the argument of the arccosine, in this case 
1

5

x 
, to be between 1  and 1, inclusive. 

 

       

1
1 1

5
1

1 5 5 1 5
5

5 1 5

5 1 5 1

4 6

x

x

x

x

x


  

    
 

   
    

  

 

Thus, the domain of   1
arccos

2 5

x
f x

    
 

 is  4,6 .  

2. To find the domain of    13tan 4g x x , we note that the domain of  1tany x  is the set of 

all real numbers.  So    13tan 4g x x  is defined when 4x  is a real number.  That is true 

whenever x  is a real number; thus the domain of g is all real numbers, or  ,  . 
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3. In determining the domain of   2
arccoth x

x
   

 
, we start with the domain of  arccoty x , 

which is all real numbers.  The only restrictions on the domain of   2
arccoth x

x
   

 
 result 

from the argument, 
2

x
, having an x  in its denominator.  We will need to exclude 0 from the 

domain of h , with the result that the domain of   2
arccoth x

x
   

 
 is    ,0 0,  . 

  

Applications of Inverse Trigonometric Functions 

The inverse trigonometric functions are typically found in applications where the measure of an angle is 

required.  One such scenario is presented in the following example. 

Example 4.3.3.7 The roof on the house in the following sketch has a 6/12 pitch.  This means that 

when viewed from the side, the roof line has a rise of 6 feet over a run of 12 feet.  Find the angle of 

elevation from the bottom of the roof to the top of the roof.  Express your answer in decimal degrees, 

rounded to the nearest hundredth of a degree. 

Figure 4.3. 2 

 

 Front View Side View 

Solution. From the side view of the roof, we can create a right triangle in which the roof line forms the 

hypotenuse, and the legs are of lengths 6 feet and 12 feet.  Using trigonometric functions of right 

triangles, we find that the angle of elevation, labeled   in the following diagram, satisfies 

  6 1
tan

12 2
   . 

 
7 Thanks to Dan Stitz for this problem. 
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Figure 4.3. 3 

 

Since   1
tan

2
  , we can use the arctangent function, along with a calculator in degree mode, to 

determine the angle measure. 

 
1

arctan
2

26.57 degrees





   
 


 

Note that the conversion from radians to degrees has already been completed by the calculator.  The angle 

of elevation from the bottom of the roof to the top is approximately 26.57º. 

  

Solving for Angles in Right Triangles 

We move on to solving for acute angles within right triangles, applying the same technique used in 

Example 4.3.3.  Through inverse trigonometric functions, we can determine an angle from knowing only 

the value of a trigonometric function, such as cosine in the following example. 

Example 4.3.4. Solve the following triangle for the angle  . 

Figure 4.3. 4 

 

Solution. Because we know the lengths of the hypotenuse and the side adjacent to the acute angle  , it 

makes sense for us to use the cosine function. 

 

  9
cos

12
9

arcco

1

since s
12

4 .

0

4
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The angle   is approximately 41.4 degrees.  

  

Knowing the measure of one acute angle in a right triangle, we can easily determine the measure of the 

second acute angle.  In the previous example, the measure of the angle opposite the side of length 9 is 

approximately 180 90 41.4 48.6      .  Note that the exact measure in radians is 
9

arcsin
12
 
 
 

. 

Solving Trigonometric Equations 

In Section 1.4, we learned to solve equations like   1
sin

2
   or  tan 1t   .  In each case, there was a 

standard angle with the given trigonometric function value.  We used periodicity of trigonometric 

functions to find all such angles.  However, no standard angle has the property that   1
sin

3
   or 

 tan 2t   .  We will solve such equations using inverse trigonometric functions. 

Example 4.3.5. 

1. Find all angles   for which   1
sin

3
  . 

2. Find all angles   for which  tan 2   . 

3. Solve   5
sec

3
x    for x . 

Solution. 

1. Let   be any angle that satisfies   1
sin

3
  .  Then for   in standard position, the y-coordinate 

of the point of intersection of its terminal side with the Unit Circle is 
1

3
. 

Figure 4.3. 5 

 

x

y

  1

3
y 

 1

 1
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As noted in Figure 4.3.5, one such angle is the acute angle 
1

arcsin
3

    
 

, and the second angle 

is 
1

arcsin
3

          
 

.  All solutions to the equation   1
sin

3
   are angles with the same 

terminal side as the angle   or  .  That is, 
1

2 arcsin 2
3

k k        
 

 or 

1
2 arcsin 2

3
k k          

 
, for any integer k . 

2. Let   be any angle that satisfies  tan 2   .  Then one such angle is  1tan 2   , which is 

in the fourth quadrant, 0
2

    , since  tan 2 0.      Noting that the period of the tangent 

function is  , another such angle is     . 

Figure 4.3. 6 

 

All solutions to the equation  tan 2    are angles with the same terminal side as   or  .  

That is, 2 k     or 2 k    , for all integers k .  Due to the fact that     , we can 

write the answer in the simpler form of 

  1tan 2

k

k

  



 

  
 

Thus, the solutions to  tan 2    are  1tan 2 k    , for any integer k . 

3. Let x  be any angle that satisfies   5
sec

3
x   .  Then   3

cos
5

x    and for x  in standard 

position, the x-coordinate of the point of intersection of the terminal side of x  with the Unit 

Circle is 
3

5
 . 

x

y
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Figure 4.3. 7 

 

From the above graph, one such angle is 
3

arccos
5

    
 

 and a second angle is 

3
arccos

5
        

 
.  All solutions to the equation   5

sec
3

x    are angles with the same 

terminal side as   or  .  That is, 
3

2 arccos 2
5

x k k        
 

 or 

3
2 arccos 2

5
x k k         

 
 for 0, 1, 2,k      

  

We continue solving basic equations involving trigonometric functions.  Below, we summarize 

techniques that were first introduced in Section 1.4.  Note that we use the letter u  as the argument of each 

trigonometric function for generality. 

Strategies for Solving Trigonometric Equations 

 To solve  cos u c  or  sin u c : 

1. If 1 1c   , first solve for u  in the interval  0,2 ; then add integer multiples of the 

period 2 . 
2. If 1c    or 1c  , there are no real solutions. 

 To solve  sec u c  or  csc u c : 

1. If 1c    or 1c  , convert to a cosine or sine equation, respectively, and solve as 
above. 

2. If 1 1c   , there are no real solutions. 

 To solve  tan u c  for any real number c , first solve for u  in the interval ,
2 2

   
 

; then 

add integer multiples of the period  . 

 To solve  cot u c : 

1. If 0c  , convert to a tangent equation and solve as above. 

2. If 0c  , the solution to  cot 0u   is 
2

u k
   , for integers k . 

x

y

1

1

  3

5
x  
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Example 4.3.6. Solve the equation   1
sin 3

2
x  . 

Solution. We begin by noting that the solutions to   1
sin

2
x   are 2

6
x k

    or 
5

2
6

x k
   , for 

integers k .  The equation   1
sin 3

2
x   has the form of   1

sin
2

u  , so the solutions are of the form 

2
6

u k
    or 

5
2

6
u k

   , for integers k .  Then, since u  is representing 3x , 

 

3 2
6

1 1
3 2

3 3 6

2

18 3

x k

x k

x k

 

 

 

 

         
    

 

 

or 

 

5
3 2

6
1 1 5

3 2
3 3 6

5 2

18 3

x k

x k

x k

 

 

 

 

         
    

 

 

Thus,   1
sin 3

2
x   has solutions 

2

18 3
k

 
  and 

5 2

18 3
k

 
 , for integers k . 

  
In the remainder of this section, we look at examples of equations that contain a single trigonometric 

function.  The solutions provide practice with, and extensions of, the technique applied in solving 

  1
sin 3

2
x  .  In addition to the general solution of each equation, we provide specific solutions that fall 

in the interval  0,2 . 

Equations Involving Sine or Cosine 

Having solved an equation with a sine function, we move on to the cosine. 

Example 4.3.7. Solve the equation   3
cos 2

2
x   .  State exact solutions, if any, that lie in the 

interval  0,2 . 

Solution. The solutions to   3
cos

2
u    are 

5
2

6
u k

    or 
7

2
6

u k
   , for integers k .  Here 

2u x ; this means 
5

2 2
6

x k
    or 

7
2 2

6
x k

   .  Solving for x  by dividing through by 2 gives 

5

12
x k

    or 
7

12
x k

   , for any integer k .8 

To determine which of our solutions lie in  0,2 , we substitute the integer values 0, 1, 2,k      into 

5

12
x k

    and 
7

12
x k

   , as shown in the following table. 

 
8 Don’t forget to divide the 2πk by 2 as well! 
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k … −2 −1 0 1 2 … 

5

12
x k

    … 
19

12


  

7

12


  

5

12


 

17

12


 

29

12


 … 

7

12
x k

    … 
17

12


  

5

12


  

7

12


 

19

12


 

31

12


 … 

The solutions in the interval  0,2  corresponding to 0k   and 1k   are 
5 7 17 19

, , ,
12 12 12 12

x
   

 . 

  

In the preceding example, the solutions 
5

12
x k

    and 
7

12
x k

    can be checked analytically by 

substituting them into the left side of the original equation,   3
cos 2

2
x   . 

 Starting with 
5

12
x k

   , we have 

 

5 5
cos 2 cos 2

12 6

5
cos            

6

3

2

 since the period of  cosine is 2

k k
 



 



          
    

   
 

 

 

 Similarly, for 
7

12
x k

   , we find 

 

7 7
cos 2 cos 2

12 6

7
cos            

6

3

2

 since the period of  cosine is 2

k k
 



 



          
    

   
 

 

  

This confirms the solutions 
5

12
x k

    or 
7

12
x k

   , for integers k . 

Equations Involving Tangent or Cotangent 

We look next at an equation that includes a cotangent function. 

Example 4.3.8. Solve  cot 3 0x  , stating any exact solutions that lie in  0,2 . 
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Solution. Since  cot 3 0x   has the form  cot 0u  , we know 
2

u k
   .  So 3

2
x k

    and 

solving for x  yields 
6 3

x k
 

  , for any integer k .  We move on to determining which of our solutions 

lie in  0,2 . 

k … −1 0 1 2 3 4 5 6 … 

6 3
x k

 
   … 

6


  

6


 

2


 

5

6


 

7

6


 

3

2


 

11

6


 

13

6


 … 

The solutions in  0,2  are 
5 7 3 11

, , , , ,
6 2 6 6 2 6

x
     

 , corresponding to 0k   through 5k  . 

  

To check the solution of 
6 3

x k
 

  , we start with the left side of  cot 3 0x  . 

 

cot 3 cot
6 3 2

cot            
2

0

 since the period of  cotangent is 

k k
   

 

          
    

   
 



 

This confirms our solutions 
6 3

x k
 

  , for integers k . 

Equations Involving Secant or Cosecant 

It is generally simpler to convert a secant or cosecant function within an equation to its reciprocal 

function before solving. 

Example 4.3.9. Solve 
1

csc 2
3

x    
 

.  State any exact solutions that are in the interval  0,2 . 

Solution. Noting that this equation has the form  csc 2u  , we rewrite it as   1
sin

2
u   and find 

2
4

u k
    or 

3
2

4
u k

   , for integers k .  For this problem, u  is 
1

3
x   

 
, so 

1
2

3 4
x k

     

or 
1 3

2
3 4

x k
    .  We continue by solving the first equation for x . 
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1
2

3 4
1

2
3 4
1 5

2
3 4

1 5
3 3 2

3 4

15
6

4

x k

x k

x k

x k

x k

 

  

 

 

 

  

  

 

       
   

 

 

Solving the second equation, 
1 3

2
3 4

x k
    , produces 

21
6

4
x k

   .  Putting these two solutions 

together, we have 
15

6
4

x k
    or 

21
6

4
x k

   , for integers k . 

Despite the infinitely many solutions of 
1

csc 2
3

x    
 

, none of these solutions lie in  0,2 .  The 

reader is encouraged to verify this result.  This problem has no solutions in the requested interval. 

  

In Example 4.3.9, the solutions may be checked as was shown in the prior two examples.  We continue 

with an equation that does not appear to fit the profile of equations presented thus far, but simply requires 

an additional step. 

Example 4.3.10. Solve  2sec 4x  .  State the exact solutions, if any, that are in the interval  0,2 . 

Solution. The complication in solving an equation like  2sec 4x   comes not from the argument of 

secant, which is just x , but rather from the fact that secant is being squared.  Thus, we begin by solving 

for  sec x :   sec 4 2x     .  Converting to cosine, we have   1
cos

2
x   . 

 For   1
cos

2
x  , the solutions are 2

3
x k

    or 
5

2
3

x k
   , for integers k . 

 For   1
cos

2
x   , the solutions are 

2
2

3
x k

    or 
4

2
3

x k
   , for integers k . 

Since the angles 
3


 and 

4

3


 differ by exactly   we can state both 2

3
x k

    and 
4

2
3

x k
    

simultaneously as 
3

x k
   .  Similarly, we can state 

2
2

3
x k

    and 
5

2
3

x k
    simultaneously 

as 
2

3
x k

   .  As a result, the solutions are 
3

x k
    or 

2

3
x k

   , for integers k . 
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The solutions in the interval  0,2  come from the values 0k   and 1k   as indicated in the following 

table. 

k … −1 0 1 2 … 

3
x k

    … 
2

3


  

3


 

4

3


 

7

3


 … 

2

3
x k

    … 
3


  

2

3


 

5

3


 

8

3


 … 

The solutions in the interval  0,2  are 
2 4 5

, , ,
3 3 3 3

x
   

 . 

  

Using Inverse Trigonometric Functions to Solve Equations 

The remaining two examples of this section require inverse trigonometric functions in their solutions.  

Otherwise, the solution process is similar to that of prior examples. 

Example 4.3.11. Solve tan 3
2

x    
 

 and determine the solutions, if any, that lie in the interval 

 0,2 . 

Solution. The equation tan 3
2

x    
 

 has the form  tan 3u   , which has solutions 

 arctan 3u k   .  Then  arctan 3
2

x
k   , and we have  2arctan 3 2x k   , for integers k . 

To determine which of the solutions lie in the interval  0,2 , we first need to get an idea of the value of 

 2arctan 3 .  While we could easily find an approximation using a calculator, we proceed analytically.  

Since 3 0  , it follows that  arctan 3 0
2


    .  Multiplying through by 2 gives 

 2arctan 3 0    .  We are now in a position to argue which of the solutions  2arctan 3 2x k    

lie in  0,2 . 

 For 0k  , we get  2arctan 3 0x    , so we discard this answer and all answers 

 2arctan 3 2x k    where 0k  . 

 Next, we turn our attention to 1k   and get  2arctan 3 2x    .  Starting with the inequality 

 2arctan 3 0    , we add 2  and get  2arctan 3 2 2      .  This means that 

 2arctan 3 2x     lies in  0,2 . 
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 Advancing k  to 2 produces  2arctan 3 4x    .  Once again, by adding 4 , we get from 

 2arctan 3 0     that  3 2arctan 3 4 4      .  Since this is outside the interval  

 0,2 , we discard  2arctan 3 4x     and all solutions of the form  2arctan 3 2x k    

for 2k  . 

In summary, the only (exact) solution of tan 3
2

x    
 

 in the interval  0,2  is  2arctan 3 2x    .  

Note that, using a calculator, this solution is approximately equal to 3.7851. 

  

Example 4.3.12. Solve  sin 2 0.87x   and find any solutions that lie in the interval  0,2 . 

Solution. To solve  sin 2 0.87x  , we first note that the equation has the form  sin 0.87u  , which 

has the family of solutions  arcsin 0.87 2u k   or  arcsin 0.87 2u k    , for integers k .  Since 

the argument of sine here is 2x , we get 

  2 arcsin 0.87 2x k   or  2 arcsin 0.87 2x k     

which gives 

  1
arcsin 0.87

2
x k   or  1

arcsin 0.87
2 2

x k
    , for integers k  

To determine which of these solutions lie in  0,2 , we first need to get an idea of the value of 

 1
arcsin 0.87

2
x  .  Once again, we could use a calculator but choose an analytic approach. 

 
 

 
2

0 arcsin 0.87
2

1
0 arcsin

       by definition

1
    after multiplying through 7 b  

4
y0.8

2





 

 
 

 Starting with the family of solutions  1
arcsin 0.87

2
x k  , we use the same type of arguments 

as in the Example 4.3.11 solution to find that only the solutions corresponding to 0k   and 

1k   lie in  0,2 :   1
arcsin 0.87

2
x   and  1

arcsin 0.87
2

x   . 

 Moving on to the family  1
arcsin 0.87

2 2
x k

    , we need a better estimate of 

 1
arcsin 0.87

2 2


 . 
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           from above

      multiply through by 1

    add 
2

 

1
0 arcsin 0.87

2 4
1

0 arcsin 0.87
2 4

1
arcsin 0.87

2 2 2 4
1

arcsin 0.87
4 2 2 2







  

  

 

   







 

 

 

Proceeding with the usual arguments, we find the only solutions that lie in  0,2  correspond to 

0k   and 1k  , namely  1
arcsin 0.87

2 2
x


   and  3 1

arcsin 0.87
2 2

x


  . 

In all, we have four solutions to  sin 2 0.87x   in  0,2 :  1
arcsin 0.87

2
x  ,  1

arcsin 0.87
2

x   , 

 1
arcsin 0.87

2 2
x


  ,  3 1

arcsin 0.87
2 2

x


  . 

  

We will solve more complex trigonometric equations in Section 4.4. 
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4.3 Exercises 

In Exercises 1 – 6, use a calculator to evaluate each expression.  Give answers in radians, correct to at 

least the nearest hundredth. 

 1.  1cos 0.4   2.  arcsin 0.23  3. 
3

arccos
5

 
 
 

 

 4.  1sin 0.8  5.  1tan 6  6.  arctan 6  

In Exercises 7 – 16, find the domain of the given function.  Write your answers in interval notation. 

 7.    1sin 5f x x  8.   1 3 1
cos

2

x
f x     

 
 9.    arcsin 3f x x   

 10.    arctan 4f x x  11.    1sec 12f x x  12.    arccsc 5f x x   

 13.    arccot 3 2f x x   14.    arccot 1 3f x x   15.   1
arccos 3

2
f x x   

 
 

 16.   1
arctanf x

x
   
 

 

In Exercises 17 – 18, find the angle   in the given right triangle.  Express your answers using degree 

measure rounded to two decimal places.  

 17. 18. 

Figure Ex4.3. 1 

 

Figure Ex4.3. 2 

 

In Exercises 19 – 21, find the two acute angles in the right triangle whose sides have the given lengths.  

Express your answers using degree measure rounded to two decimal places. 

 19. lengths 3, 4, and 5 20. Lengths 5, 12, and 13 21. lengths 336, 527, and 625

  

10
7

 

12

19
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22. A wire 1000 feet long is attached to the top of a tower.  When pulled taut, it touches level ground 360 

feet from the base of the tower.  What angle does the wire make with the ground?  Express your 

answer using degree measure rounded to one decimal place. 

23. At Cliffs of Insanity Point, the Great Sasquatch Canyon is 7117 feet deep.  From that point, a fire is 

seen at a location known to be 10 miles away from the base of the sheer canyon wall.  What angle of 

depression is made by the line of sight from the canyon edge to the fire?  Express your answer using 

degree measure rounded to one decimal place. 

24. Shelving that is being built at the college library is to be 14 inches deep.  An 18-inch rod will be 

attached to the wall beneath each shelf, and to the underside of the shelf at its edge away from the 

wall, forming a right triangle under the shelf to support it.  What angle, to the nearest degree, will the 

rod make with the wall? 

25. A parasailor is being pulled by a boat on Lake Powell.  The cable is 300 feet long and the parasailor is 

100 feet above the surface of the water.  What is the angle of elevation from the boat to the 

parasailor?  Express your answer using degree measure rounded to one decimal place. 

26. A tag-and-release program to study the Sasquatch population of the eponymous Sasquatch National 

Park is begun.  From a 200-foot tall tower, a ranger spots a Sasquatch lumbering through the 

wilderness directly toward the tower.  Let   denote the angle of depression from the top of the tower 

to a point on the ground.  If the range of the rifle with a tranquilizer dart is 300 feet, find the smallest 

value of   for which the corresponding point on the ground is in range of the rifle.  Round your 

answer to the nearest hundredth of a degree. 

27. Suppose a 13-foot ladder leans against the side of a house, reaching to the bottom of a second-floor 

window 12 feet above the ground.  What angle does the ladder make with the house?  Round your 

answer to the nearest tenth of a degree. 

In Exercises 28 – 47, solve the equation.  Then approximate any solutions that lie in the interval  0,2  

to four decimal places. 

 28.   7
sin

11
x   29.   2

cos
9

x    30.  sin 0.569x    

 31.  cos 0.117x   32.  sin 0.008x   33.   359
cos

360
x   

 34.  tan 117x   35.  cot 12x    36.   3
sec

2
x   
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 37.   90
csc

17
x    38.  tan 10x    39.   3

sin
8

x   

 40.   7
cos

16
x    41.  tan 0.03x   42.  sin 0.3502x   

 43.  sin 0.721x    44.  cos 0.9824x   45.  cos 0.5637x    

 46.   1
cot

117
x   47.  tan 0.6109x    

In Exercises 48 – 74, solve the equation for x , where x  is in radians.  State the exact solutions, if any, 

that lie in the interval  0,2 . 

 48.  sin 5 0x   49.   1
cos 3

2
x   50.   3

sin 2
2

x   

 51.  tan 6 1x   52.  csc 4 1x    53.  sec 3 2x   

 54.   3
cot 2

3
x    55.  cos 9 9x   56. 

2
sin

3 2

x   
 

 

 57.  csc 0x   58.  2tan 3x   59.  2 4
sec

3
x   

 60.  2cos 3x   61.  24sin 3 0x    62.  cos 2 0x    

 63. 
5

cos 0
6

x
   

 
 64. 

1
sin 2

3 2
x

    
 

 65. 
7

2cos 3
4

x
   

 
 

 66.  tan 2 1x    67.  2 1
cos

2
x   68.  2 3

sin
4

x   

 69.  3 tan 1 0x    70.  23cot 1 0x    71.  22sin 4 0x    

 72.  23tan 2 1 0x    73. 
7

2cos 3
4

x
   

 
 74. cot 2 0

3
x

   
 

 

In Exercises 75 – 82, solve the equation. 

 75.  arccos 2x   76.  2arcsin 2x    77.  4arctan 3 1 0x     

 78.  6arccot 2 5 0x    79. 4arcsec
2

x    
 

 80. 12arccsc 2
3

x    
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 81.  2 29arcsin 0x    82.  2 29arccos 0x    

83. Determine the number of solutions to   1
sin

2
x   in  0,2 .  Then find the number of solutions to 

  1
sin 2

2
x  ,   1

sin 3
2

x   and   1
sin 4

2
x   in  0,2 .  A pattern should emerge.  Explain how this 

pattern would help you solve equations like   1
sin 11

2
x  . 

84. Determine the number of solutions to 
1

sin
2 2

x   
 

, 
3 1

sin
2 2

x   
 

 and 
5 1

sin
2 2

x   
 

 in  0,2 .  Is 

there a pattern that emerges?  Explain.  Then replace 
1

2
 with −1 and repeat the whole exploration. 
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4.4 Solving General Trigonometric Equations  

Learning Objectives 

 Solve equations containing different powers of the same trigonometric 

function. 

 Solve equations containing multiple trigonometric functions. 

 Solve equations containing multiple arguments of the same trigonometric 

function. 

 Find solutions to trigonometric equations in a given interval. 

The general method for solving complex trigonometric equations is to reduce them to simpler 

trigonometric equations; that is, single trigonometric functions equal to numbers.  We will do this using 

trigonometric identities and algebraic operations like factoring. 

Equations Containing Different Powers of the Same Trigonometric Function 

Example 4.4.1. Solve the equation    3 23sin sinx x .  State the exact solutions, if any, that lie in 

the interval  0,2 . 

Solution. The main steps in solving this equation are the same as solving the polynomial equation 

3 23u u .  While we could use the substitution  sinu x  to obtain the polynomial equation, we will 

solve without making this substitution.  Note that we must resist the temptation to divide both sides of 

   3 23sin sinx x  by  2sin x .  (What goes wrong if you do?)  Instead, we put all terms on one side to 

get zero on the other side and factor. 

 

   
   

      

3

2

3 2

2

2 .

3

 

sin si

Factor sin  from both ter0 m

n

3sin sin 0

sin 3sin 1 s

x

x

x

x x

x x



 

              

 

Using the Zero Product Property, we set each factor equal to zero to get  2sin 0x   or  3sin 1 0x   , 

from which  sin 0x   or   1
sin

3
x  . 
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 The solutions to  sin 0x   are x k , for integers k , with 0  and   being the two solutions 

that lie in  0,2 .9 

 To solve   1
sin

3
x  , we use the arcsine function to get 

1
arcsin 2

3
x k   

 
 or 

1
arcsin 2

3
x k     

 
, for integers k .  Of these solutions, the two that lie in  0,2  are 

1
arcsin

3
 
 
 

 and 
1

arcsin
3

    
 

. 

To summarize, the solutions to    3 23sin sinx x  are x k , 
1

arcsin 2
3

x k   
 

, or 

1
arcsin 2

3
x k     

 
, for integers k .  In the interval  0,2 , the solutions are 

1 1
0, arcsin , arcsin ,

3 3
x         

   
.10 

  

Equations Containing Multiple Trigonometric Functions 

In the next example, we make use of a Pythagorean identity to arrive at an equation involving just one 

trigonometric function. 

Example 4.4.2. Solve the equation    2sec tan 3x x  .  State the exact solutions, if any, that lie in 

the interval  0,2 . 

Solution. Since    2sec tan 3x x   contains two different trigonometric functions, an identity is in 

order so that we may rewrite the equation in terms of all secants or all tangents.  We use the Pythagorean 

identity    2 2tan 1 secx x  . 

 
   

   

2

2 y

sec tan 3

tan 1 tan 3 iPythagorean ident t

x x

x x

 

     
 

Now we have an equation like in the last example.  To simplify the process, we will make a substitution. 

 

   

  

2

2

2

tan 1 tan 3

1 3

2 0

1 2 0

Let tan( ).x x

u u

u

u x

u

u u

  

  

  



  

   

                
 

 
9 In this section, the reader should verify solutions in  0,2  by plugging in values for k.  

10 Note that we are not counting 2x   as a solution since it is not in the interval  0,2 . 
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Using the Zero Product Property, we have 1 0u    or 2 0u   , from which 1u    or 2u  .  Then, 

since  tanu x ,  tan 1x    or  tan 2x  . 

 From  tan 1x   , we get 
4

x k
    , for integers k .  The solutions that lie in  0,2  are 

3

4


 

and 
7

4


. 

  To solve  tan 2x  , we employ the arctangent function and get  arctan 2x k  , for integers 

k .  Using the same sort of argument that we saw in Example 4.3.11, we get  arctan 2x   and 

 arctan 2x    as solutions in  0,2 . 

In summary, the solutions to    2sec tan 3x x   are 
4

x k
     or  arctan 2x k  , for any 

integer k .  The solutions in the interval  0,2  are    3 7
, , arctan 2 , arctan 2

4 4
x

    . 

  

Equations Containing Multiple Arguments of the Same Trigonometric 

Function 

As in Example 4.4.2, some trigonometric equations can be solved by treating them as quadratic 

equations.  The next example is another equation that is quadratic in form after applying a trigonometric 

identity. 

Example 4.4.3. Solve the equation    cos 2 1 3cosx x  .  State the exact solutions that lie in the 

interval  0,2 . 

Solution. The equation    cos 2 1 3cosx x   has just one type of trigonometric function, but two 

different arguments, x  and 2x .  We will use the trigonometric identity    2cos 2 2cos 1x x   to rewrite 

the equation with the single argument x , and then proceed as in the last example. 

 

   
   

   
 

  

2

2

2

double ang

0

le ident

cos 2 1 3cos

2cos 1 1 3cos

2cos 3cos 2 0

3

it

2

y

Let c2 0

2 1

o

2

s .

x x

x x

x x

uu u x

u u

 

  

  

  





 

   

 

This gives 
1

2
u   or 2u   .  Since  cosu x , we have   1

cos
2

x   or  cos 2x   . 

 Solving   1
cos

2
x  , we get 2

3
x k

    or 
5

2
3

x k
   , for integers k . 
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 Since 2  is outside of the range of cosine, there are no values of x  for which  cos 2x   . 

The solutions to    cos 2 1 3cosx x   are 2
3

x k
    or 

5
2

3
x k

   , for integers k .  The solutions 

that lie in  0,2  are 
3


 and 

5

3


. 

  

Equations Containing Multiple Trigonometric Functions and Multiple 

Arguments 

In the following example, we cannot use trigonometric identities to obtain just one trigonometric function 

and one argument.  However, we can still solve using factoring. 

Example 4.4.4. Solve the equation    sin 2 3 cosx x .  State the exact solutions, if any, that lie in 

the interval  0,2 . 

Solution. In examining the equation    sin 2 3 cosx x , not only do we have multiple functions 

involved, namely sine and cosine, we also have multiple arguments to contend with, namely 2x  and x , 

respectively.  Using the double angle identity      sin 2 2sin cosx x x  makes all of the arguments the 

same.  We then rewrite the equation so we have an expression equal to zero, and proceed by factoring. 

 

   
     

     
    

sin 2 3 cos

2sin cos 3 cos

2sin cos 3 cos 0

cos 2sin 3 0

x x

x x x

x x x

x x





 

 

 

Then  cos 0x   or   3
sin

2
x  .  From  cos 0x  , we obtain 

2
x k

   , for integers k .  From 

  3
sin

2
x  , we get 2

3
x k

    or 
2

2
3

x k
   , for integers k . 

The answers that lie in  0,2  are 
3

, ,
2 2 3

x
  

 ,
2

3


.  

  

The last example in this section, which also includes multiple functions and arguments, tests our memory 

a bit and introduces another solution technique. 
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Example 4.4.5. Solve the equation    sin cos cos sin 1
2 2

x x
x x       

   
.  State the exact solutions that 

lie in the interval  0,2 . 

Solution. Unlike the equation in the previous example, there seems to be no quick way to get the 

trigonometric functions or their arguments to match in the equation    sin cos cos sin 1
2 2

x x
x x       

   
.  

If we stare at it long enough, however, we realize that the left side is the expanded form of the sum 

formula for sin
2

x
x  

 
. 

 

   sin cos cos sin 1
2 2

sin 1
2

3
sin 1

2

x x
x x

x
x

x

       
   

   
 
   
 

 

Consequently, our original equation is equivalent to 
3

sin 1
2

x   
 

.  We proceed to solve for x . 

 
1

3
sin 1

2

3
2

2 2
2

since sine i

2

s equal t

3
2

3 2 3 2

4

3 3

 o 

x

x k

x k

x k

 

 

 

   
 

 

           
     

 

 
 

The solution to the original equation is 
4

3 3
x k

 
  , for integers k .  The following solutions lie in the 

interval  0,2 : 
5

,
3 3

x
 

 . 

  

As demonstrated in the examples, solutions in this section require recognizing the correct identity and/or 

factoring.  With a little practice, you will become proficient in solving trigonometric equations. 
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4.4 Exercises 

In Exercises 1 – 14, solve the equation for x , where x  is in radians.  State the exact solutions, if any, that 

lie in the interval  0,2 . 

  1.    22sin sin 0x x   2.    3tan 3tanx x  

 3.    2cos cos 2 0x x    4.    3cos cosx x   

 5.    22cos cos 1x x   6.    3tan tanx x  

 7.    2tan 3 tan 0x x   8.    2sin sin 2 0x x    

 9.    2cot cotx x   10.    25cos 4cos 1 0x x    

 11.      3 2csc csc 4csc 4x x x    12.    28sin 6sin 1 0x x    

 13.    28cos 3 2cosx x   14.    24cos 4 15cosx x   

In Exercises 15 – 44, use trigonometric identities in solving each equation for x , where x  is in radians.  

State the exact solutions, if any, that lie in the interval  0,2 . 

 15.    sin 2 sinx x  16.    sin 2 cosx x  

 17.    cos 2 sinx x  18.    cos 2 cosx x  

 19.    cos 2 2 5cosx x   20.    3cos 2 cos 2 0x x    

 21.    cos 2 5sin 2x x   22.    3cos 2 sin 2x x   

 23.    22sec 3 tanx x   24.    22 tan 3secx x  

 25.      tan 2sin tan 0x x x   26.      2 2sin cos sin 0x x x    

 27.      10sin cos 6cosx x x  28.    29cos 2 9cos 4x x   

 29.    212sin cos 6 0x x     30.    2tan 1 secx x   

 31.    2cot 3csc 3x x   32.    2 3
tan sec

2
x x  
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 33.    tan secx x  34.    sin cosx x  

 35.    sec 2cscx x  36.    sin 2 tanx x  

 37.    4 2cot 4csc 7x x   38.    2cos 2 csc 0x x   

 39.    tan 2 2cos 0x x   40.        2cos csc cot 6 cotx x x x   

 41.        sin 6 cos cos 6 sinx x x x   42.        sin 3 cos cos 3 sinx x x x  

 43.        cos 2 cos sin 2 sin 1x x x x   44.         3
cos 5 cos 3 sin 5 sin 3

2
x x x x   
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CHAPTER 5 
BEYOND RIGHT TRIANGLES 

 

Figure 5.0. 1 

Chapter Outline 

5.1 The Law of Sines  

5.2 The Law of Cosines 

Introduction 

By now, you can use the Pythagorean Theorem and trigonometric functions to fully determine a 

right triangle if you know the measure of one of its acute angles and the length of one of its 

sides, or the lengths of two of its sides.  We would like to expand this capability to general planar 

shapes.  Since any straight-sided geometric shape can be subdivided into triangles, but not 

necessarily right triangles, we will discuss properties of non-right (oblique) triangles.  In 

particular, for an oblique triangle we seek generalizations of right triangle trigonometry. 

In Section 5.1, we will develop the Law of Sines, which can be used to fully determine a triangle 

if we know certain information; for example, the measure of two of its angles and the length of 

one of its sides.  Then, in Section 5.2, we will develop the Law of Cosines, which is a 

generalization of the Pythagorean Theorem to oblique triangles.  We can use the Law of Cosines 

to fully determine a triangle if we know the lengths of all of its sides or the lengths of two of its 

sides and the measure of the angle between the known sides. 

More generally, using the Laws of Sines and Cosines, we will determine if there is no triangle, 

one triangle, or two triangles that may satisfy a given set of conditions. 

A

B

C

 a

 

 

 
 b

 c
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5.1 The Law of Sines  

Learning Objectives 

 Use the Law of Sines to solve triangles. 

 Distinguish between ASA, AAS, and SSA triangles. 

 Determine when given criteria will result in one, two, or no triangles.   

 Find the area of a triangle using the sine function. 

 Use the Law of Sines to solve applied problems. 

Trigonometry literally means ‘measuring triangles’, and with Chapters 1 – 4 under our belts we are 

prepared to do just that.  The main goal of this chapter is to develop theorems that allow us to solve 

triangles; that is, to find the length of each side of a triangle and the measure of each of its angles. 

Solving Triangles 

We have had some experience solving right triangles.  The following example reviews what we know. 

Example 5.1.1. Given a right triangle with a hypotenuse of length 7 units and one leg of length 4 

units, find the length of the remaining side and the measures of the remaining angles.  Express the angle 

measures in degrees, rounded to the nearest hundredth of a degree.  

Solution. For definitiveness, we label the triangle below. 

Figure 5.1. 1 

 

 To find the length of the missing side a , we use the Pythagorean Theorem to get 2 2 24 7a   , 

which yields 33a   units. 
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Now that all three sides of the triangle are known, there are several ways we can find   and   using the 

inverse trigonometric functions.  To decrease the chances of propagating error, however, we stick to the 

data given to us in the problem.  In this case, the lengths 4 and 7 were given. 

 We want to relate the lengths 4 and 7 to  .  Since   is one of the acute angles in a right triangle, 

and   4
cos

7
  , we find 

4
arccos

7
    

 
 radians.  Using a calculator and converting to degrees, 

  is approximately equal to 55.15º. 

 Similarly, since   is one of the acute angles in a right triangle, and   4
sin

7
  , then 

4
arcsin

7
    

 
 radians, and we have 34.85   . 

Note that we could have used the measure of angle   to find the measure of angle  , using the fact that 

  and   are complements ( 90    ). 

  

A few remarks about Example 5.1.1 are in order: 

1. As mentioned earlier, we strive to solve for quantities using the original data given in the 

problem.  To avoid the accumulation of rounding errors, whenever possible, we will use exact 

values.  While this is not always the easiest or fastest way to proceed, it minimizes the chances of 

propagated error. 

2. We will use angle measure in degrees for the time being, since degrees are used in both design 

and manufacturing.1 

For a triangle with sides a , b , c  and angles  ,  ,  , 

we adhere to the convention that a  is the side opposite 

 , b  is the side opposite  , and c  is the side opposite 

 .  Taken together, the pairs  ,a ,  ,b , and  ,c  

are called angle-side opposite pairs. 

Figure 5.1. 2 

 

The Law of Sines 

The Pythagorean Theorem (along with the definitions of the trigonometric functions) allows us to easily 

handle any given right triangle problem, but what if the triangle is not a right triangle?  Any triangle that 

is not a right triangle is called an oblique triangle.  In oblique triangles, the Pythagorean Theorem no 

 
1 Don’t worry!  Radians will be back before you know it! 

 a

 

 

 
 b

 c
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longer applies so we need something else.  In certain cases, we can use the Law of Sines to solve such 

triangles. 

Theorem 5.1. The Law of Sines: In any triangle with angle-side opposite pairs  ,a ,  ,b , and 

 ,c , the following equality of ratios holds: 

 
     sin sin sin

a b c

  
   

or, equivalently,  

 
     sin sin sin

a b c

  
   

The proof of the Law of Sines can be broken into three cases. 

1. For our first case, consider  ABC , shown below, having all acute angles and angle-side 

opposite pairs  ,a ,  ,b , and  ,c .  Note that A , B , and C  identify the vertices 

corresponding to angles  ,  , and  , respectively.  

Figure 5.1. 3 

 

Figure 5.1. 4 

 

If we drop an altitude from vertex B , we divide the triangle into two right triangles:  ABQ  

and  BC Q .  We call the altitude h  (for height).  Then  sin
h

c
   and  sin

h

a
  , so that 

   sin sinh c a   .  Then, from    sin sinc a  , we get 
   sin sin

a c

 
 . 

A

B

C

 a

 

 

 
 b

 c

A

B

C

h

Q

 a

   

 c
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Figure 5.1. 5 

 

If we drop an altitude from vertex A , we can proceed as above, using  A B R  and  AC R  to 

get 
   sin sin

b c

 
 , completing the proof for this case. 

2. For the next case, consider  ABC , shown below, with obtuse angle  .  Extending an altitude 

from vertex A gives two right triangles:  ABQ  and  AC Q .  Proceeding as before, 

 sinh c   and  sinh b  , so that 
   sin sin

b c

 
 . 

Figure 5.1. 6 

 

Figure 5.1. 7 

 

Dropping an altitude from vertex B  also generates two right triangles:  A B R  and  BC R . 

Figure 5.1. 8 

 

We know that   '
sin '

h

c
  .  Since ' 180   ,    sin ' sin  , so in fact we have 

 ' sinh c  .  Proceeding to  BC R , we get   '
sin

h

a
  , so  ' sinh a  .  Putting this 

together with the previous equation results in 
   sin sin

c a

 
 , and we are finished with this 

case. 

A

B

C

R
h'

 

 
 b

 c
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3. The remaining case is when  ABC  is a right triangle.  In this case, the definitions of 

trigonometric functions can be used to verify the Law of Sines.  This verification is left to the 

reader. 

In order to use the Law of Sines to solve a triangle, we need at least three measurements of angles and/or 

sides, including at least one of the sides.  Also note that we need to be given, or be able to find, at least 

one angle-side opposite pair.  We will investigate three possible scenarios. 

AAS (Angle-Angle-Side) 

Given the measures of two angles in a triangle (the sum of which is less than 180 degrees) and the length 

of a side not connecting the angles, the triangle is unique.  Although we will not prove this fact, we will 

demonstrate it in the next example. 

Example 5.1.2. Solve the triangle with 120   , 7a   units, and 45   .  Give exact answers and 

decimal approximations (rounded to hundredths) and sketch the triangle. 

Solution. We begin by sketching a representative triangle.  Then, noting the existence of an angle-side 

opposite pair, namely 120    and 7a   units, we proceed in using the Law of Sines. 

Figure 5.1. 9 

 

 

   

 
 

 

 s

sin 45 sin 120

7

7sin 45

sin 120

7 2 2

since 45

rounded to hu

3 2

7 2
5.72 unit es r dt

3
nd h

o

b

b

b

b













             
 





 

Now that we have two angle-side opposite pairs, it is time to find the third.  To find  , we use the fact 

that the sum of the measures of angles in a triangle is 180º.  Hence, 180 120 45 15        .  To find 

c , we use the derived value 15    and, to minimize the propagation of error, we use the given angle-

side opposite pair  ,a .  The Law of Sines gives us 

b

c

  45  

  120  

  7a 
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sin 15 sin 120

7

7sin 15

sin 120

2.09 units

c

c

c







 



  

The exact value of  sin 15  could be found using the difference identity for sine or a half-angle formula, 

but that becomes unnecessarily messy for the discussion at hand.  Thus, ‘exact’ here means 

 
 

7sin 15

sin 120
c 



 . 

Figure 5.1. 10 

 

  

ASA (Angle-Side-Angle) 

Given the measures of two angles in a triangle (the sum of which is less than 180 degrees) and the length 

of the side connecting the angles, the triangle is unique.  Although we will not prove this fact, we will 

demonstrate it in the next example. 

Example 5.1.3. Solve the triangle with 85   , 30   , and 5.25c   units.  Give exact answers 

and decimal approximations (rounded to hundredths) and sketch the triangle. 

Solution. We begin with a sketch. 
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Figure 5.1. 11 

 

Having the measures of   and  , we can solve for  : 

 
180 85 30

65

   



  


 

The Law of Sines gives 

 

   

 
 

sin 85 sin 65

5.25

5.25sin 85

sin 65

5.77 units

a

a

a







 



  

 

To find b , we again use the angle-side opposite pair  ,c , which yields 

   

 
 

sin 30 sin 65

5.25

5.25sin 30

sin 65

2.90 units

b

b

b







 



  

Figure 5.1. 12 

 

  

SSA (Side-Side-Angle) 

In the third scenario, we are given the lengths of two sides and the measure of an angle (less than 180°) 

that is not between the two sides.   In this case, there can be three possible outcomes: one triangle, two 

triangles, or no triangle that satisfies the given measures.  The case in which there are two triangles is 

referred to as the ambiguous case.  We will demonstrate these three cases in the following examples. 

Example 5.1.4. Solve the triangle with 30   , 1a   unit, and 4c   units. 

Solution. Since we are given  ,a  and c , we use the Law of Sines to find the measure of  . 

a

b

  5.25c 

  85  

 
  30 
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sin 30sin

4 1

sin 4sin 30

sin 2















  

Since the range of the sine function is  1,1 , there is no angle   with  sin 2  , and thus no triangle 

that meets the given criteria.  Geometrically, we see that side a  is just too short to make a triangle. 

Figure 5.1. 13 

 

  

The following examples keep the same value for the measure of   and the length of c , while varying the 

length of a .  We will discuss the preceding case in more detail after we see what happens in the next 

three examples. 

Example 5.1.5. Solve the triangle with 30   , 2a   units, and 4c   units. 

Solution. Using the Law of Sines, we get 

 

   

   
 

sin 30sin

4 2

sin 2sin 30

sin 1















  

Since   is an angle in a triangle (its measure is less than 180º), we must have 90   .  In other words, 

we have a right triangle.  We find the measure of   to be 180 30 90 60        , and use the Law of 

Sines to determine b : 

 

   

 
 

 

sin 30 sin 60

2

2sin 60

sin 30

2 3 2

1 2

2 3 3.46 units

b

b

b

b
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In this case, the side a  is precisely long enough to form a unique right triangle. 

Figure 5.1. 14 

 

Note that we could also solve for b  using the Pythagorean Theorem. 

  

Example 5.1.6. Solve the triangle with 30   , 3a   units, and 4c   units. 

Solution. Proceeding as in the previous two examples, we use the Law of Sines to find  .  In this case, 

we have 

 

   

   

 

sin 30sin

4 3

4sin 30
sin

3
2

sin
3

















 

Since   lies in a triangle with 30   , we must have 0 150   .  There are two angles   that fall in 

this range and have   2
sin

3
  : 

2
arcsin

3
    

 
 radians, approximately 41.81º, and 

2
arcsin

3
      

 
 

radians, approximately 138.19º. 

 In the case 
2

arcsin
3

    
 

 radians ≈ 41.81º, we find 2 180 30 41.81 108.19        .  Using 

the Law of Sines with the angle-side opposite pair  ,a  and  , we find 

 
 

3sin 108.19
5.70

sin 30
b  



  units. 

 

2 To find an exact expression for  , we convert everything back to radians: 30
6

    radians, 
2

arcsin
3

    
 

 

radians, and 180   radians.  Hence, 
2 5 2

arcsin arcsin
6 3 6 3

             
   

 radians ≈ 108.19º. 
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 In the case 
2

arcsin
3

      
 

 radians ≈ 138.19º, we repeat the exact same steps and find 

11.81    and 1.23b   units.3 

Both triangles are drawn below. 

Figure 5.1. 15 

 

Figure 5.1. 16 

 

  

Example 5.1.7. Solve the triangle with 30   , 4a   units, and 4c   units. 

Solution. For this problem, we repeat the usual Law of Sines routine to find that 

 

   

   
 

sin 30sin

4 4

sin sin 30

1
sin

2















  

Then   must inhabit a triangle with 30   , so that 0 150   .  Since the measure of   must be 

strictly less than 150º, there is only one angle that satisfies both required conditions, namely 30   .  

Then 180 30 30 120         and, using the Law of Sines one last time, 

   

 
 

 

sin 30 sin 120

4

4sin 120

sin 30

4 3 2

1 2

4 3 6.93 units

b

b

b

b







 

 




 

Figure 5.1. 17 

 

  

Before moving on, we review the information needed to determine a triangle.   

 

3 An exact answer for   in this case is 
2

arcsin
3 6

    
 

 radians ≈ 11.81º. 
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1. If we know the measures of two angles in a triangle, the measure of the third angle can be 

uniquely determined using the fact that the sum of the angles in a triangle is always 180 degrees.  

Having the measures of all three angles allows us to completely determine the shape of a triangle. 

2. In addition to knowing the measures of two angles in a triangle, if we are given the length of one 

side, we can utilize the Law of Sines.  This enables us to find the lengths of the remaining two 

sides, allowing us to determine the size of the triangle.  This holds true for both the AAS and the 

ASA cases. 

3. If we are provided with the measure of only one angle and the lengths of two sides in a triangle, 

where only one of these two sides is adjacent to the given angle, we have the SSA case.  In this 

situation, it is possible to encounter one triangle, two triangles, or no triangle at all, as 

demonstrated in Examples 5.1.4 – 5.1.7. 

The possibilities in the SSA case are summarized in the following theorem.   

Theorem 5.2. Suppose  ,a  and  ,c  are intended to be angle-side opposite pairs in a triangle 

where  , a , and c  are given.  Let  sinh c  . 

 If a h , then no triangle exists that satisfies the given criteria. 

 If a h , then 90    so exactly one (right) triangle exists that satisfies the criteria. 

 If h a c  , then two distinct triangles exist that satisfy the criteria. 

 If a c , then   is acute and exactly one triangle exists that satisfies the given criteria. 

Theorem 5.2 is proved on a case-by-case basis. 

 If a h  then  sina c  .  If a triangle were to exist, the Law of Sines would have 

   sin sin

c a

 
  so that    sin

sin 1
c a

a a


    , which is impossible.  In the figure below, we 

see geometrically why this is the case. 

Figure 5.1. 18 

 

a h , no triangle 
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Simply put, if a h  the side a  is too short to connect so that a triangle may be formed.  On the 

other hand, if a h , we are always guaranteed to have at least one triangle, and the remaining 

parts of the theorem tell us what kind and how many triangles to expect in each case. 

 If a h , then  sina c   and the Law of Sines gives 
   sin sin

a c

 
  so that 

   sin
sin 1

c a

a a


    .  Here, 90    as required. 

Figure 5.1. 19 

 

a h , 90    

 Moving along, now suppose h a c  .  As before, the Law of Sines gives    sin
sin

c

a


  .  

Since h a ,  sinc a   or 
 sin

1
c

a


 , which means there are two solutions to 

   sin
sin

c

a


  : an acute angle we’ll call 0 , and its supplement 0180  .  We need to argue 

that each of these angles ‘fits’ into a triangle with a . 

o Since  ,a  and  0 ,c  are angle-side opposite pairs, the assumption c a  in this case 

gives 0  .  Then, knowing that 0  is an acute angle, it must be true that   is acute as 

well.  This means that one triangle can contain both   and 0 , giving us one of the 

triangles promised in the theorem. 

o By manipulating the inequality 0  , we get 0180 180     , which gives 

 0180 180     .  This proves a triangle can contain both of the angles   and 

 0180  , giving us the second triangle predicted in the theorem. 
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Figure 5.1. 20 

 

h a c  , two triangles 

 To prove the last case in the theorem, we assume a c .  Then   , which forces   to be an 

acute angle.  Hence, we get only one triangle in this case, completing the proof. 

Figure 5.1. 21 

 

a c , one triangle 

One last comment before we end this discussion.  In the Side-Side-Angle case, if you are given an obtuse 

angle to begin with then it is impossible to have the two triangle case. 

Finding the Area of a Triangle 

The following theorem introduces a new formula to compute the area enclosed by a triangle.  Its proof 

uses the same cases and diagrams as the proof of the Law of Sines and is left to the reader as an exercise. 

Theorem 5.3. Suppose  ,a ,  ,b , and  ,c  are the angle-side opposite pairs of a triangle.  Then 

the area enclosed by the triangle is given by 

      1 1 1
sin sin sin

2 2 2
A bc ac ab      

Example 5.1.8. Find the area of the triangle in which 120   , 7a   units and 45   . 

Solution. This is the triangle from Example 5.1.2 in which we found all three angles and all three 

sides. 
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Figure 5.1. 22 

 

To minimize propagated error, we choose  1
sin

2
A ac  , from Theorem 5.3, because it uses the most 

pieces of given information.  We are given 7a   and 45   , and we calculated 
 

 
7sin 15

sin 120
c 



  in 

Example 5.1.2.  Using these values, we find 

 
   

   7sin 151
7 sin 45

2 sin 120

5.18 square units

A
 
 
 
 






  

The reader is encouraged to check this answer against the results obtained using the other formulas in 

Theorem 5.3. 

  

Solving Applied Problems Using the Law of Sines 

The more we study trigonometric applications, the more we discover that the applications are countless.  

Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics 

involve three dimensions and motion. 

Example 5.1.9. Suppose two radar stations located 20.0 miles apart each detect an aircraft between 

them, as indicated in the following figure. 

Figure 5.1. 23 

 

The angle of elevation measured by the first station is 15 degrees, whereas the angle of elevation 

measured by the second station is 35 degrees.  Find the altitude of the aircraft and round your answer to 

the nearest tenth of a mile. 

Solution. To find the altitude (height) of the aircraft, we first determine the distance from one of the 

radar stations to the aircraft. 

station 1

aircraft

station 2
 

15
 

35

 20 miles
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Figure 5.1. 24 

 

Letting a  represent the distance from the first station to the aircraft, we look for an angle-side opposite 

pair from which we can determine the distance a .  We know the measure of two angles in the triangle, 

but the measure of the angle opposite the side of length 20 miles is missing.  Noting that the angles in a 

triangle add up to 180 degrees, we find the unknown angle measure to be 180 15 35 130      .  This 

gives an angle-side opposite pair with known values and allows us to set up a Law of Sines relationship. 

 

   

   
 

 

sin 130 sin 35

20

sin 130 20sin 35

20sin 35

sin 130

14.975

a

a

a

a









 

 







 

The distance a , from the first station to the aircraft, is about 14.975 miles.  Now that we know an 

approximate value for a , we can use right triangle relationships to find an approximate height, h , of the 

aircraft. 

Figure 5.1. 25  
 
 

   

 h

s

 

in

rounded to nearest tent

0

15

sin 15

20sin 35
sin 15

sin 13

3.9

h

a

h a

h

h





 
 
 
 












 The aircraft is at an altitude of approximately 3.9 miles. 

  

Note that when we do not use exact values in calculations, it is wise to include more decimal places in 

intermediate steps, since it may result in better accuracy for the final answer. 

Example 5.1.10. Sasquatch Island lies off the shore of Ippizuti Lake.  As indicated in the following 

figure, two sightings from the shoreline of Ippizuti Lake to the lighthouse on Sasquatch Island are taken 5 

miles apart.   

station 1

aircraft

station 2

height
 

15
 

35

 a

 20 miles

station 1

aircraft

h
 15

  14.975 milesa 
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Figure 5.1. 26 

 

The angle between the shoreline and the lighthouse at the first observation point is 30º and at the second 

point is 45º.  Assuming a straight shoreline, find the distance from the second observation point to the 

lighthouse.  What point on the shoreline, relative to the second observation point, is closest to the 

lighthouse?  How far is the lighthouse from this point? 

Solution. We sketch the scenario, labeling the first observation point P  and the second observation 

point Q . 

Figure 5.1. 27 

 

In order to use the Law of Sines to find the distance d  from Q  to the lighthouse, we first need to find the 

measure of  , which is the angle opposite the side of length 5 miles.  To that end, we note that the angles 

  and 45º are supplementary, so that 180 45 135      .  We can now find  . 

 

180 30

180 30 135

15

   

  



 

  


 

By the Law of Sines, we have 

Lighthouse on Sasquatch Island

Shoreline of Ippizuti Lake

 30  45

 5 miles

Lighthouse

Shoreline
P Q

d

 30  45

 

 

 5 miles
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sin 30 sin 15

5

5sin 30

sin 15

9.66 miles

d

d

d







 



  

Next, to find the point on the shoreline closest to the lighthouse, which we have labeled as C , we need to 

find the perpendicular distance from the lighthouse to the shoreline.4 

Figure 5.1. 28 

 

Let x  denote the distance from the second observation point Q  to the point C  and let y  denote the 

distance from C  to the lighthouse.  Using the right triangle definition of sine, we get 

 

 
 
 
 

sin 45

sin 45

5sin 30 2

2sin 15

6.83 miles

y

d

y d

y

y





  
       











 

The lighthouse is approximately 6.83 miles from the coast.  To find the distance from Q  to C , we note 

that 180 90 45 45        , showing that we have an isosceles triangle, so 6.83x y   miles.  Hence, 

the point on the shoreline closest to the lighthouse is approximately 6.83 miles down the shoreline from 

the second observation point. 

  

 
4 Do you see why C must lie to the right of Q? 

CQ x

y

 45

 

  9.66 milesd 
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Bearings 

We next introduce the navigation tool known as bearings.  Simply put, a bearing is the direction you are 

heading according to a compass.  The classic nomenclature for bearings, however, is not given as an angle 

in standard position, so we must first understand the notation. 

A bearing is given as an acute angle of rotation (to the east or to the west) away from the north-south (up 

and down) line of a compass rose.  For example, N40ºE (read ‘40º east of north’) is a bearing that is 

rotated clockwise 40º east from due north.  Similarly, for the bearing S50ºW we start out pointing due 

south and then rotate west (clockwise) 50º.  Counter-clockwise rotations would be found in the bearings 

N60ºW (which is the rotation of 60° west from due north) and S27ºE (which is the rotation of 27° east 

from due south).  These four bearings are drawn in the plane in the following sketch. 

Figure 5.1. 29 

 

The cardinal directions north, south, east, and west are usually not given as bearings in the fashion 

described above, but rather referred to as ‘due north’, ‘due south’, ‘due east’, and ‘due west’, respectively.  

It is assumed that you know which quadrantal angle goes with each cardinal direction. 

Example 5.1.11. Two hikers, Cesar and Carla, are 5 miles apart when they each sight a signal flare.  

Cesar observes the signal flare at a bearing of N15ºE from his current location.  From her position, Carla 

finds the signal flare to be at a bearing of N65ºW.  If the bearing from Cesar to Carla is N50ºE, find the 

distance from each hiker to the flare, rounded to the nearest tenth of a mile.  

Solution. We sketch the problem below, labeling the distance from Cesar to the flare as 1d  and the 

distance from Carla to the flare as 2d . 

N

EW

S

 40

  40N E

  27S E

 27
 50
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 60
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Figure 5.1. 30 

 

We will use the Law of Sines to find 1d  and 2d , but first need to determine the measure of the three 

angles: the angle  , opposite the side of length 5; the angle  , opposite the side of length 1d ; and the 

angle  , opposite the side of length 2d . 

Figure 5.1. 31 

 

Figure 5.1. 32 

 

From the original sketch, 50 15 35      .  Then, using the bearing angle measures of 15º and 65º, we 

find angles 1  and 2 , as shown above, to have measures 90 15 75     and 90 65 25    , 

respectively.  Thus, 180 75 25 80        .  It follows that 180 35 80 65        .  We are ready 

to use the Law of Sines to determine distances 1d  and 2d . 
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Figure 5.1. 33 
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The distance from Cesar to the flare is approximately 4.6 miles, while the distance from Carla to the flare 

is approximately 2.9 miles. 

  

We close this section with the encouragement that, by working through the many problems in the 

Exercises, you will become proficient in applying the Law of Sines to real-world applications and will be 

ready to move on to the Law of Cosines in Section 5.2.  
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5.1 Exercises    

In Exercises 1 – 12, find the value of x .  Round your answers to the nearest tenth. 

 1.  2. 3. 

Figure Ex5.1. 1 

 

Figure Ex5.1. 2 

 

Figure Ex5.1. 3 

 

 4.  5. 6. 

Figure Ex5.1. 4 

 

Figure Ex5.1. 5 

 

Figure Ex5.1. 6 

 

 7.  8. 9. 

Figure Ex5.1. 7 

 

Figure Ex5.1. 8 

 

Figure Ex5.1. 9 
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10.  11. Note: x  is an obtuse angle. 12. 

Figure Ex5.1. 10 

 

Figure Ex5.1. 11 

 

Figure Ex5.1. 12 

 

In Exercises 13 – 32, solve for the remaining side(s) and angle(s) if possible.  As in the text,  ,a , 

 ,b , and  ,c  are angle-side opposite pairs.  Round answers to the nearest hundredth. 

 13. 13   , 17   , 5a   14. 73.2   , 54.1   , 117a   

 15. 95   , 85   , 33.33a   16. 95   , 62   , 33.33a   

 17. 117   , 35a  , 42b   18. 117   , 45a  , 42b   

 19. 68.7   , 88a  , 92b   20. 42   , 17a  , 23.5b   

 21. 68.7   , 70a  , 90b   22. 30   , 7a  , 14b   

 23. 42   , 39a  , 23.5b   24. 53   , 53   , 28.01c   

 25. 6   , 57a  , 100b   26. 74.6   , 3c  , 3.05a   

 27. 102   , 16.75b  , 13c   28. 102   , 16.75b  , 18c   

 29. 102   , 35   , 16.75b   30. 29.13   , 83.95   , 314.15b   

 31. 120   , 61   , 4c   32. 50   , 25a  , 12.5b   

  

5.7

x

5.3

 

59

21

x

24

 

55
10

x

12

 

65
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In Exercises 33 – 38, find the area of each triangle.  Round answers to the nearest tenth. 

33.  34. 35. 

Figure Ex5.1. 13 

 

Figure Ex5.1. 14 

 

Figure Ex5.1. 15 

 

  

36.  37. 38. Assume the triangle has an 

obtuse angle 

Figure Ex5.1. 16 

 

Figure Ex5.1. 17 

 

Figure Ex5.1. 18 

 

39. Find the area of the triangles.  As in the text,  ,a ,  ,b , and  ,c  are angle-side opposite pairs.  

Round to the nearest tenth. 

a) 13   , 17   , 5a   units 

b) 53   , 53   , 28.01c   units 

c) 50   , 25a   units, 12.5b   units  

24.1
32.6
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30
18
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4.5
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51
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40. Find the radius of the circle. 41. Find the diameter of the circle. 

Round to the nearest tenth.           Round to the nearest tenth. 

Figure Ex5.1. 19 

 

Figure Ex5.1. 20 

 

42. In order to estimate the height of a building, Sadie observes that from her current position the angle of 

elevation from the street to the top of the building is 39°.  She moves 300 feet closer to the building 

and finds the angle of elevation to be 50°.  Assuming that the street is level, estimate the height of the 

building to the nearest foot. 

43. A man and a woman standing 3.5 miles apart spot a hot air balloon at the same time.   If the angle of 

elevation from the man to the balloon is 27° and the angle of elevation from the woman to the balloon 

is 41°, find the altitude of the balloon to the nearest foot. 

44. Two radar stations, A and B, are 500 feet apart.  From the radar stations, the angles out to a boat are 

measured to be 70° and 60°, respectively, as shown in the figure.  Determine the distance of the boat 

from station A and the distance of the boat from shore.  Round your answers to the nearest whole foot. 

Figure Ex5.1. 21 

 

45. Two search teams spot a stranded climber on a mountain.  The first search team is 0.5 miles from the 

second search team, and both teams are at an altitude of 1 mile.  The angle of elevation from the first 
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search team to the stranded climber is 15°.  The angle of elevation from the second search team to the 

climber is 22°.  What is the altitude of the climber?  Round your answer to the nearest tenth of a mile. 

46. The Bermuda triangle is a region of the Atlantic Ocean that connects Bermuda, Florida, and Puerto 

Rico.  Find the area of the Bermuda triangle if the distance from Florida to Bermuda is 1040 miles, 

the distance from Puerto Rico to Bermuda is 980 miles, and the angle created by the two distances is 

62°.  Round to the nearest square mile. 

47. Michael and Brenda decide to hunt UFOs.  One night, they position themselves 2 miles apart on an 

abandoned stretch of desert runway.  An hour into their investigation, Michael spies a UFO hovering 

over a spot on the runway directly between him and Brenda.  He records the angle of inclination from 

the ground to the craft to be 75° and radios Brenda immediately to find that the angle of inclination 

from her position to the craft is 50°.  How high off the ground is the UFO at this point?  Round your 

answer to the nearest foot.  (Recall: 1 mile is 5280 feet.) 

48. A yield sign measures 30 inches on each of its three sides.  What is the area of the sign? 

Grade: The grade of a road is much like the pitch of a roof in that it expresses the ratio of rise/run.  In 

the case of a road, this ratio is always positive because it is measured going uphill and it is usually 

given as a percentage.  For example, a road that rises 7 feet for every 100 feet of (horizontal) forward 

progress is said to have a 7% grade.  However, if we want to apply any trigonometry to a story problem 

involving roads going uphill or downhill, we need to view the grade as an angle with respect to the 

horizontal. 

In Exercises 49 – 51, begin by changing road grades into angles and then apply the Law of Sines. 

 49. Using a right triangle with a horizontal leg of length 100 and a vertical leg of length 7, show that a 

7% grade means that the road (hypotenuse) makes about a 4° angle with the horizontal.  (It will not 

be exactly 4° but it is pretty close.) 

 50. What grade is given by a 9.65° angle made by the road and the horizontal? 

 51. Along a long, straight stretch of mountain road with a 7% grade, you see a tall tree standing 

perfectly plumb alongside the road.5  From a point 500 feet downhill from the tree, the angle of 

inclination from the road to the top of the tree is 6°.  Use the Law of Sines to find the height of the 

tree.  (Hint: First show that the tree makes a 94° angle with the road.) 

  

 
5 The word ‘plumb’ here means that the tree is perpendicular to the horizontal. 
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52. Find the angle   in standard position with 0 360    that corresponds to each of the bearings 

given below. 

 (a) due west (b) S83°E (c) N5.5°E (d) due south 

 (e) N31.25°W (f) S72°W (g) N45°E (h) S45°W 

53. Bozena spots a campfire at a bearing of N42°E from her current position.  Piotr, who is positioned 

3000 feet due east of Bozena, reckons the bearing to the fire to be N20°W from his current position.  

Determine the distance from the campfire to Bozena and the distance from the campfire to Piotr, 

rounded to the nearest foot. 

54. A hiker starts walking due west from Sasquatch Point and gets to the Chupacabra Trailhead before she 

realizes that she hasn’t reset her pedometer.  From the Chupacabra Trailhead she hikes for 5 miles 

along a bearing of N53°W, which brings her to the Muffin Ridge Observatory.  From there, she 

knows a bearing of S65°E will take her straight back to Sasquatch Point.  How far will she have to 

walk to get from the Muffin Ridge Observatory to Sasquatch Point?  What is the distance between 

Sasquatch Point and the Chupacabra Trailhead? 

55. The captain of the SS Bigfoot sees a signal flare at a bearing of N15°E from her current location.  

From his position, the captain of the HMS Sasquatch finds the signal flare to be at a bearing of 

N75°W.  If the SS Bigfoot is 5 miles from the HMS Sasquatch and the bearing from the SS Bigfoot to 

the HMS Sasquatch is N50°E, find the distances from the flare to each vessel, rounded to the nearest 

tenth of a mile. 

56. Carl spies a potential Sasquatch nest at a bearing of N10°E and radios Jeff, who is at a bearing of 

N50°E from Carl’s position.  From Jeff’s postion, the nest is at a bearing of S70°W.  If Jeff and Carl 

are 500 feet apart, how far is Jeff from the Sasquatch nest?  Round your answer to the nearest foot. 

57. Lars determines that the bearing to a lodge from his current position is S40°W.  He proceeds to hike 2 

miles at a bearing of S20°E at which point he determines that the bearing to the lodge is S75°W.  

How far is he from the lodge at this point?  Round your answer to the nearest hundredth of a mile. 

58. A watchtower spots a ship offshore at a bearing of N70°E.  A second tower, which is 50 miles from 

the first at a bearing of S80°E from the first tower, determines the bearing to the ship to be N25°W.  

How far is the boat from the second tower?  Round your answer to the nearest tenth of a mile. 
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59. The angle of depression from an observer in an apartment complex to a gargoyle on the building next 

door is 55°.  From a point five stories below the original observer, the angle of inclination to the 

gargoyle is 20°.  Find the distance from each observer to the gargoyle and the distance from the 

gargoyle to the apartment complex.  Round your answers to the nearest foot.  (Use the rule of thumb 

that one story of a building is 9 feet.) 

60. Prove that the Law of Sines holds for right triangles. 

61. Why is knowing only the three angles of a triangle not enough information to determine any of the 

side lengths? 

62. Why can the Law of Sines not be used to find the angles in a triangle when only the three side lengths 

are given?  What about when only the lengths of two sides and the angle between them are given?  

(Said another way, explain why the Law of Sines cannot be used in the SSS and SAS cases.) 

63. Given 30    and 10b  , for each of the following choose a value for a  so that 

a) the information yields no triangle; 

b) the information yields exactly one right triangle; 

c) the information yields two distinct triangles; 

d) the information yields exactly one obtuse triangle. 

Explain why no value of a yields exactly one triangle with three acute angles. 
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5.2 The Law of Cosines  

Learning Objectives 

 Use the Law of Cosines to solve triangles. 

 Solve SAS and SSS triangles. 

 Use Heron’s Formula to find the area of a triangle. 

 Use the Law of Cosines to solve applied problems. 

In Section 5.1, we developed the Law of Sines to enable us to solve triangles in the ‘Angle-Side-Angle’ 

(ASA), the ‘Angle-Angle-Side’ (AAS), and the ‘Side-Side-Angle’ (SSA) cases.  In this section, we 

develop the Law of Cosines, which enables us to solve triangles in two additional cases: the ‘Side-Angle-

Side’ (SAS) case and the ‘Side-Side-Side’ (SSS) case. 

The Law of Cosines 

We state and prove the Law of Cosines theorem below. 

Theorem 5.4. The Law of Cosines: In any triangle with angle-side opposite pairs  ,a ,  ,b , and 

 ,c , the following relationship holds: 

 2 2 2 2 cosc a b ab     

By solving for the cosine, this equation may be written as  
2 2 2

cos
2

a b c

ab
  

 . 

Note that the Law of Cosines reduces to the Pythagorean Theorem if  , the angle opposite the side of 

length c , is 90° (since cosine of 90° is zero).  We can rewrite this law in the alternate forms: 

 
 
 

2 2 2

2 2 2

2 cos

2 cos

a b c bc

b a c ac





  

  
 

To prove the theorem, we consider a generic triangle A B C , having angle-side opposite pairs  ,a , 

 ,b , and  ,c .  With vertices A , B , and C  positioned at angles  ,  , and  , respectively, we 

place vertex C  at the origin, and side a  along the positive x-axis.   
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Figure 5.2. 1 

 

From this set-up, we find that the coordinates of C  are  0,0  and that the coordinates of B  are  ,0a .  

Since the point A  lies on a circle of radius b , the coordinates of A  are       , cos , sinx y b b  .  

(This would be true even if   was an obtuse or right angle, so although we have drawn the case where   

is acute, the following computations hold for any angle   where 0 180   .)  We note that the length 

between points A  and B  is the length of side c .  Using the distance formula, we get 
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The remaining formulas,  2 2 2 2 cosa b c bc     and  2 2 2 2 cosb a c ac    , can be verified by 

simply reorienting the triangle to place a different vertex at the origin.  We leave the details to the reader.  

It is important to note in the preceding proof that  ,c  is an angle-side opposite pair with a  and b  the 

sides adjacent to c .  The same can be said of any other angle-side opposite pair in the triangle.  In 

general, for an angle   in a triangle with sides p , q , and r , where r  is opposite  , 

 2 2 2 2 cosr p q pq    . 

The proof of the Law of Cosines relies on the distance formula, which has its roots in the Pythagorean 

Theorem.  As noted earlier, if we have a triangle in which 90   , then    cos cos 90 0   , and we 

x

y

a

b c

 

      cos , sinA b b 

   ,0B a
   0,0C
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get the familiar relationship 2 2 2c a b  .  What this means is that in the larger mathematical sense, the 

Law of Cosines is the generalization of the Pythagorean Theorem.6  To utilize the Law of Cosines for 

solving a triangle, it is necessary to have a minimum of three measurements of angles and/or sides, with at 

least two sides included.  We will explore two potential scenarios in this context. 

SAS (Side-Angle-Side) 

Given two lengths and an angle measure less than 180 degrees for the angle formed by the two sides with 

the given lengths, there exists a unique triangle that satisfies these properties.  We call this specific 

scenario the SAS case.  While we will not provide a formal proof of this fact, we will illustrate it in the 

next example. 

Example 5.2.1. Solve the triangle in which 50   , 7a   units, and 2c   units.  Give exact 

answers and decimal approximations (rounded to hundredths) and sketch the triangle. 

Solution. We are given the lengths of two sides, 7a   units and 2c   units, and the measure of the 

included angle 50   .  We begin with a representative triangle. 

Figure 5.2. 2 

 

While our first choice is generally to apply the Law of Sines, with no angle-side opposite pair to use, we 

apply the Law of Cosines to find b . 

 

 
    
 

2 2 2

2 2 2

2 cos

7 2 2 7 2 cos 50

53 28cos 50

5.9162

b a c ac

b

b

b

  

  

 









 

We proceed with the Law of Cosines to solve for   by selecting the form  2 2 2 2 cosa b c bc    , with 

7a  , 5.9162b   and 2c  . 

 
6 This shouldn’t come as too much of a shock.  All theorems in Trigonometry can ultimately be traced back to the 

definition of the trigonometric functions along with the distance formula and, hence, the Pythagorean Theorem. 
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2 cos

7 5.9162 2 2 5.9162 2 cos

49 5.9162 4 4 5.9162 cos

49 5.9162 4
cos
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Since   is an angle in a triangle, it must be between 0 and   radians, so 

 
 
 

2
49 5.9162 4

arccos  radians
4 5.9162

114.99


  

    
 

 

Now, the simplest way to find the remaining angle is to use the fact that the sum of the angles in a triangle 

is 180 degrees. 

 

180

180 114.99 50

15.01

    

  





  


 

Below is a sketch of the triangle. 

Figure 5.2. 3 

 

  

Note that in the last example we could have used the Law of Sines to find the angle  .  However, that 

approach would lead to two possibilities for   and requires knowing more properties of triangles to 

arrive at the correct answer.  This is shown below. 

 

Returning to the point in the solution where we found 5.9162b  , and having 50    and 7a  , we 

could use the Law of Sines to determine  : 

 
   sin 50sin

7 5.9162





 

The usual calculations then produce 65.01    or 114.99   .  Neither of these values can be 

eliminated until   is calculated.  With 2c  , we find 
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   sin 50sin

2 5.9162





 

This results in 15.01    or 164.99   , with the second value being too large since 164.99 180    .  

To finish off this solution, 

 

180

180 50 15.01

114.99

    

  





  


 

For future reference, although the Law of Sines may simplify the solution process, this should be 

restricted to the situation where the angle being determined is clearly an acute angle.  Otherwise, using 

the Law of Cosines is generally less cumbersome. 

SSS (Side-Side-Side) 

Given the lengths of all three sides of a triangle, where the sum of any two lengths is greater than the 

remaining length, there exists a unique triangle with sides of these lengths.  This specific scenario is 

known as the SSS case.  Although we will not prove this fact, we will demonstrate it in the next example. 

Example 5.2.2. Solve for the angles in the triangle with sides of lengths 4a   units, 7b   units, and 

5c   units. 

Solution. Since all three sides and no angles are given, we are forced to use the Law of Cosines.  While 

we could start by finding any of the three angles, we will solve for   first, using the formula 

 2 2 2 2 cosb a c ac     along with 4a  , 7b  , and 5c  . 
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Simplifying, we find   1
cos

5
   , from which 

 
1

arccos  radians
5

101.54
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Noting that   is an obtuse angle, the remaining angles   and   must be acute, so we can use the Law 

of Sines without any ambiguity.  To make calculations even simpler, 7 we can use   1
cos

5
    to get 

  2 6
sin

5
  .  Then we have 

   

 

 

 

sin sin

2 6

5 sin

7 4

8 6
7sin
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sin sin
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5 sin

7 5
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7
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(Note that in practice, we will apply Law of Sines only once.)  From these results, we find 

8 6
arcsin

35


 
   

 
 radians, which is approximately 34.05º, and 

2 6
arcsin

7


 
   

 
 radians, approximately 

44.42º.  A sketch of the triangle with labeled side lengths and angle measures follows. 

Figure 5.2. 4 

 

  

We note that when rounded values are carried from one step to the next, depending on how many decimal 

places are carried through the successive calculations, the approximate answers you obtain may differ 

slightly from those posted in examples and exercises.  The different approaches used to solve problems 

may also result in slightly different answers.  Example 5.2.2 is a great example of this in that the 

approximate values we record for the measures of the angles sum to 180.01º, which is geometrically 

impossible. 

We continue the discussion from Section 5.1 on information needed to determine a triangle, with 

references to the two additional cases introduced in this section. 

 
7 Refer to Section 1.3 if necessary, noting that β is a Quadrant II angle. 



T5-36 Beyond Right Triangles 
 

1. Given the lengths of two sides and an angle measure less than 180 degrees, where the angle with 

known measure is formed by the two sides with given lengths, we refer to this as the SAS case.  

We note that there exists a unique triangle with these properties. 

2. Given the lengths of three sides of a triangle, where the sum of any two lengths is greater than 

the remaining length, we refer to this as the SSS case.  In this case, there exists a unique triangle 

having sides of these lengths. 

Solving Applied Problems Using the Law of Cosines 

Next, we have an application of the Law of Cosines. 

Example 5.2.3. A researcher wishes to determine the width of a vernal pond as drawn below.  From 

a point P , she finds the distance to the western-most point of the pond to be 950 feet, while the distance 

to the northern-most point of the pond from P  is 1000 feet.  If the angle between the two lines of sight is 

60º, find the width of the pond. 

Figure 5.2. 5 

 

Solution. We are given the lengths of two sides and the measure of an included angle, so we may apply 

the Law of Cosines to find the length of the missing side opposite the given angle.  Calling this length w  

for width (as already indicted in the drawing), we get 

 
    2 2 2950 1000 2 950 1000 cos 60

952,500

w   




 

Then 952500w    and, since the distance is positive, 952500w   , from which the width of the 

pond is approximately 976 feet. 

  

Heron’s Formula 

In Section 5.1, the proof of the Law of Sines may be used to develop Theorem 5.3 as a method for 

finding the area enclosed by a triangle.  In this section, we use the Law of Cosines to derive another such 

formula, known as Heron’s Formula. 
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Theorem 5.5. Heron’s Formula. Suppose a , b , and c  denote the lengths of the three sides of a 

triangle.  Let s  be the semiperimeter of the triangle; that is, let  1

2
s a b c   .  Then the area A , 

enclosed by the triangle, is given by 

    A s s a s b s c     

We use Theorem 5.3 to prove Theorem 5.5.  Using the convention that the angle   is opposite the side 

c , we have  1
sin

2
A ab   from Theorem 5.3.  In order to simplify computations, we start by 

manipulating the expression for 2A . 
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From the Law of Cosines, we have  
2 2 2

cos
2

a b c

ab
  

 .  Substituting this into our equation for 2A  

gives 
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Noting that we have a difference of squares, we factor and simplify. 
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At this stage, we recognize the last factor as the semiperimeter,  1

2 2

a b c
s a b c

 
    .  To complete 

the proof, we note that 

 

 
2

2

2

2

a b c
s a a

a b c a

b c a

 
  

  


 


 

Similarly, we find  
2

a c b
s b

 
   and  

2

a b c
s c

 
  .  Hence, we get 

 
       

   

2

2 2 2 2

b c a a c b a b c a b c
A

s a s b s c s

       
   

   
 

so that    A s s a s b s c     as required. 

We close with an example of Heron’s Formula. 

Example 5.2.4. Find the area of the triangle in Example 5.2.2; that is, the triangle with sides of 

lengths 4a   units, 7b   units, and 5c   units. 

Solution. Using the side lengths 4a   units, 7b   units, and 5c   units, we find the semiperimeter is 

 1
4 7 5 8

2
s      units.  Then, applying Heron’s Formula, results in 
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4 6 9.80 square units
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5.2 Exercises 

In Exercises 1 – 4, solve for the length of unknown side.  Round final answers to the nearest tenth.  

 1. 2. 

Figure Ex5.2. 1 

 

Figure Ex5.2. 2 

 

 3. 4. 

Figure Ex5.2. 3 

 

Figure Ex5.2. 4 

 

In Exercises 5 – 8, find the measure of the angle  .  Round final answers to the nearest tenth.  

 5. 6. 

Figure Ex5.2. 5 

 

Figure Ex5.2. 6 
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 7. 8. 

Figure Ex5.2. 7 

 

Figure Ex5.2. 8 

 

9. Find the measure of each angle in the triangle.  Round final answers to the nearest tenth. 

Figure Ex5.2. 9 

 

In Exercises 10 – 19, use the Law of Cosines to find the remaining side(s) and angle(s), if possible.  

Round final answers to the nearest hundredth. 

 10. 7,  12,  59.3a b      11. 25,  37,  104b c      

 12. 153,  153,  8.2a c      13. 3,  4,  90a b      

 14. 3,  4,  120b c      15. 7,  10,  13a b c    

 16. 1,  2,  5a b c    17. 300,  302,  48a b c    

 18. 5,  5,  5a b c    19. 5,  12,  13a b c    

8.2

4.3

6.8

 

23.3

38.7 40.6

 

12

10 7

 

 

 



T5-42 Beyond Right Triangles 

 

In Exercises 20 – 25, solve for the remaining side(s) and angle(s), if possible, using any appropriate 

technique.  Round final answers to the nearest hundredth. 

 20. 18,  20,  63a b      21. 37,  45,  26a b c    

 22. 16,  20,  63a b      23. 22,  20,  63a b      

 24. 117,  88,  42b c      25. 98.6,  7 ,  170c       

In Exercises 26 – 29, find the area of the triangle.  Round final answers to the nearest hundredth. 

 26. 27. 

Figure Ex5.2. 10 

 

Figure Ex5.2. 11 

 

 28. 29. 

Figure Ex5.2. 12 

 

Figure Ex5.2. 13 

 

30. Find the area of the triangles.  Round final answers to the nearest hundredth. 

a) 7,  10,  13a b c    

b) 300,  302,  48a b c    

c) 5,  12,  13a b c    

12

8
17

36

22

50

2.6

1.9

4.3
 

2

3

 

3

5

 

1

2
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31. A regular octagon is inscribed in a circle with a radius of 8 inches.  Find the perimeter of the octagon.  

Round your answer to the nearest hundredth. 

Figure Ex5.2. 14 

 

32. A regular pentagon is inscribed in a circle of radius 12 cm.  Find the perimeter of the pentagon.  

Round your answer to the nearest tenth. 

Figure Ex5.2. 15 

 

33. The hour hand on an antique Seth Thomas schoolhouse clock is 4 inches long and the minute hand is 

5.5 inches long.  Find the distance between the ends of the hands when the clock reads four o’clock.  

Round your answer to the nearest hundredth of an inch. 

34. A geologist wants to measure the diameter of a crater.  From her camp, it is 4 miles to the northern-

most point of the crater and 2 miles to the southern-most point.  If the angle between the two lines of 

sight is 117°, what is the diameter of the crater?  Round your answer to the nearest hundredth of a 

mile. 

35. From the Pedimaxus International Airport, a tour helicopter can fly to Cliffs of Insanity Point by 

following a bearing of N8.2°E for 192 miles or it can fly to Bigfoot Falls by following a bearing of 

S68.5°E for 207 miles.  Find the distance between Cliffs of Insanity Point and Bigfoot Falls.  Round 

your answer to the nearest mile. 
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36. Cliffs of Insanity Point and Bigfoot Falls, from Exercise 35, both lie on a straight stretch of the Great 

Sasquatch Canyon.  What bearing would the tour helicopter need to follow to go directly from 

Bigfoot Falls to Cliffs of Insanity Point?  Round your angle to the nearest tenth of a degree. 

37. Sarah sets off on her hike from the lodge at a bearing of S80°W.  After 1.5 miles, she changes her 

bearing to S17°W and continues hiking for 3 miles.  Find her distance from the lodge at this point.  

Round your answer to the nearest hundredth of a mile.  What bearing should she follow to return to 

the lodge?  Round your angle to the nearest degree. 

38. The HMS Sasquatch leaves port on a bearing of N23°E and travels for 5 miles.  It then changes course 

and follows a bearing of S41°E for 2 miles.  How far is it from port?  Round your answer to the 

nearest hundredth of a mile.  What is its bearing to port?  Round your angle to the nearest degree. 

39. The SS Bigfoot leaves harbor bound for Nessie Island, which is 300 miles away, at a bearing of 

N32°E.  A storm moves in and after 100 miles, the captain of the Bigfoot finds he has drifted off 

course.  If his bearing to the harbor is now S70°W, how far is the SS Bigfoot from Nessie Island?  

Round your answer to the nearest hundredth of a mile.  What course should the captain set to head to 

the island?  Round your angle to the nearest tenth of a degree. 

40. From a point 300 feet above ground in a firetower, a ranger spots two fires in the Yeti National Forest.  

The angle of depression made by the line of sight from the ranger to the first fire is 2.5° and the angle 

of depression made by the line of sight from the ranger to the second fire is 1.3°.  The angle formed 

by the two lines of sight is 117°.  Find the distance between the two fires.  Round your answer to the 

nearest foot.  (Hint: In order to use the 117° angle between the lines of sight, you will first need to use 

right triangle Trigonometry to find the lengths of the lines of sight.  This will give you an SAS case in 

which to apply the Law of Cosines.) 

Figure Ex5.2. 16 

 

 

 

Firetower 
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CHAPTER 6 
POLAR COORDINATES AND 

APPLICATIONS 

 
Figure 6.0. 1 

 
Figure 6.0. 2 

 
Figure 6.0. 3 

 

Chapter Outline 

6.1 Polar Coordinates and Equations  

6.2 Graphing Polar Equations 

6.3 Polar Representations of Complex Numbers 

6.4 Complex Products, Powers, Quotients, and Roots 

Introduction 

You have likely become familiar with the Cartesian coordinate system and its use of a 

rectangular grid for locating points.  The polar coordinate system is another coordinate system 

that relies only on direction and distance.  Making the transition from Cartesian to polar 

coordinates may seem awkward and strange at first.  However, we will find that it becomes a 

more natural way of describing certain curves, like circles.  In polar coordinates, some seemingly 

complicated curves can be represented by relatively simple polar equations.  We will also 

describe complex numbers using polar coordinates in order to perform certain complex number 

calculations more simply. 

Section 6.1 introduces polar coordinates, along with conversions between polar and rectangular 

coordinates and equations.  In Section 6.2, various polar equations are discussed and graphed.  

Section 6.3 discusses complex numbers, their graphs in the complex plane, and properties of 

θ 

θ 
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complex numbers.  Finally, Section 6.4 is all about computing products, powers, quotients, and 

roots of complex numbers.   
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6.1 Polar Coordinates and Equations 

Learning Objectives 

 Graph points in polar coordinates. 

 Convert points in polar coordinates to rectangular coordinates and vice 

versa. 

 Convert an equation from rectangular coordinates into polar coordinates. 

 Convert an equation from polar coordinates into rectangular coordinates. 

Up to this point, we have graphed points in the Cartesian coordinate plane by assigning ordered pairs of 

numbers to points in the plane.  We defined the Cartesian coordinate plane using two number lines, one 

horizontal and one vertical, which intersect at right angles at a point called the origin.  To plot a point, say 

 3,4P  , we start at the origin, travel horizontally to the left 3 units, then up 4 units. 

Figure 6.1. 1 

 

Alternatively, we could start at the origin, travel up 4 units, then to the left 3 units and arrive at the same 

location.  For the most part, the motions of the Cartesian system (such as ‘over and up’) describe a 

rectangle, and most points can be thought of as the corner diagonally across the rectangle from the 

origin.1  For this reason, the Cartesian coordinates of a point are often called rectangular coordinates. 

In this section, we introduce polar coordinates, a new system for assigning coordinates to points in the 

plane. 

 
1 Excluding, of course, the points in which one or both coordinates are 0. 

x

y

         



















   3,4P 
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Plotting Polar Coordinates 

We start with a point of origin, called the pole, and a ray called the polar axis with its initial point at the 

pole.  In Cartesian coordinates, we can interpret the pole as the origin and the polar axis as the positive 

side of the x-axis.  We then locate a point P  using two coordinates  ,r  , where r  represents the 

directed distance from the pole (the distance of P  from the pole is r ) and   is the measure of rotation 

about the pole from the polar axis.  (We will discuss and demonstrate what it means for r  to be negative.) 

Figure 6.1. 2 

 

Example 6.1.1. Plot the point P  with polar coordinates 
5

4,
6

 
 
 

. 

Solution. To plot the polar point 
5

4,
6

P
 

 
 

, we start with the rotation 
5

6

  .  From the polar axis, 

we rotate 
5

6


 radians counter-clockwise about the pole.  We then move outward from the pole 4 units  

along the resulting ray.  Essentially, we are locating a point on the terminal side of the standard position 

of the angle 
5

6


 that is 4 units away from the pole.  Note that adding concentric circles to the sketch 

makes it easier to plot points. 

Figure 6.1. 3 

 

First 

Figure 6.1. 4 

 

Second 

Figure 6.1. 5 

 

The Resulting Point 

  

Polar AxisPole

 

   ,P r 

 r

   

  5
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If 0r  , we first determine the ray that results from the rotation of  , and then move r  units from the 

pole in the direction opposite to that ray. 

Example 6.1.2. Plot the point Q  with polar coordinates 3.5,
4

  
 

. 

Solution. We start with a rotation of 
4


 radians counter-clockwise from the polar axis, and then move 

3.5 units in the opposite direction from the pole.  Note that we are locating a point 3.5 units away from the 

pole on the terminal side of 
5

4


, not 

4


. 

Figure 6.1. 6 

 

First 

Figure 6.1. 7 

 

Second 

Figure 6.1. 8 

 

The Resulting Point 

  

As you may have guessed, 0   means that the rotation away from the polar axis is clockwise instead of 

counter-clockwise. 

Example 6.1.3. Plot the point R  with polar coordinates 
3

3.5,
4

  
 

. 

Solution. To plot 
3

3.5,
4

R
  

 
, we first rotate 

3

4


  radians from the polar axis, and then move out 

3.5 units from the pole. 

   

 

4

 

       

 
3.5,

4
Q
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Figure 6.1. 9 

 

First 

Figure 6.1. 10 

 

Second 

Figure 6.1. 11 

 

The Resulting Point 

  

Multiple Representations for Polar Coordinates 

The points Q  and R  in the above examples are the same point despite the fact that their polar coordinate 

representations are different.  Unlike Cartesian coordinates where  ,a b  and  ,c d  represent the same 

point if and only if a c  and b d , a point in polar coordinates has infinitely many representations.  We 

explore this notion in the following examples. 

Example 6.1.4. Plot the point  2,240P  , given in polar coordinates, and then find two additional 

representations for the point, one of which has 0r   and the other with 0r  . 

Solution. We rotate 240º before moving out 2 units from the pole to plot  2,240P  . 

Figure 6.1. 12 

 

Figure 6.1. 13 
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We now set about finding alternate descriptions  ,r   for the point P .  Since P  is 2 units from the pole, 

2r  , from which 2r   .  We can find appropriate   values, different from 240°, so that each of the 

polar coordinates    , 2,r    and    , 2,r     represent the point P . 

 To have coordinates of the form    , 2,r    for the point P , the angle   must be coterminal 

with 240°.  As seen on the graph, one such angle is 120    , resulting in the representation 

 2, 120  . 

Figure 6.1. 14 

 

Figure 6.1. 15 

 

Since infinitely many angles have the same terminal side, there are many other correct answers 

such as    2,240 360 2,600     or    2, 120 360 2, 480      . 

 To have coordinates of the form    , 2,r    , the point P  must be on the opposite side of the 

terminal side of the angle  .  As seen below, one such angle is 60   , resulting in the 

representation  2,60  . 

Figure 6.1. 16 

 

Figure 6.1. 17 
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The infinitely many representations for the point P  include    2,60 360 2,420       and 

   2,60 360 2, 300       . 

  

Example 6.1.5. Plot the point 
7

4,
6

P
  

 
, given in polar coordinates, and then find two additional 

representations for the point, one with 0r   and one with 0r  . 

Solution. We plot 
7

4,
6

  
 

 by first rotating 
7

6


 radians counter-clockwise from the polar axis, and 

then moving 4 units in the opposite direction from the pole. 

Figure 6.1. 18 

 

Figure 6.1. 19 

 

To find alternate descriptions for P , we note that the distance from P  to the pole is 4 units, so any 

representation  ,r   for P  must have 4r   .  Such representations are of the form    , 4,r    or 

   , 4,r    . 

 To have coordinates of the form    , 4,r    for point P , the terminal side of angle   must lie 

on the line that contains the terminal side of 
7

6


.  One such angle is 

6


, as seen below in Figure 

6.1.20.  Coupled with 4r  , this gives 4,
6

 
 
 

 as one solution.  Noting that there are infinitely 

many correct answers, another solution is 
13

4, 2 4,
6 6

        
   

. 

 For different coordinates of the form    , 4,r     for P , the angle   must be coterminal with 

the angle 
7

6


.  As seen in Figure 6.1.21, one such angle is 

5

6

   , resulting in the 

   

  7

6

 

   

 

7
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6
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representation 
5

4,
6

   
 

.  Another of the infinitely many correct answers here is 

5 17
4, 2 4,

6 6

            
   

. 

Figure 6.1. 20 

 

Figure 6.1. 21 

 

   

Example 6.1.6. Plot the point 
5

117,
2

P
  

 
, given in polar coordinates, and then find two 

additional representations for the point, one with 0r   and one with 0r  . 

Solution. To plot 
5

117,
2

P
  

 
, we rotate 

5

2


 radians clockwise from the polar axis, and then move 

117 units outward from the pole. 

Figure 6.1. 22 

 

Since P  is 117 units from the pole, any representation  ,r   for P  must have 117r   or 117r   . 
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 For the 117r   case, we can take   to be any angle coterminal with 
5

2


 .  We choose 

3

2

   

to get 
3

117,
2

 
 
 

 as one representation for P . 

 For 117r   , the terminal side of the angle   must lie on the line that contains the terminal side 

of the angle 
5

2


 .  One such angle is 

2

  , so 117,
2

  
 

 is a representation for P . 

Figure 6.1. 23 

 

Figure 6.1. 24 

 

  

Example 6.1.7. Plot the point 3,
4

P
   

 
, given in polar coordinates, and then find two additional 

representations for the point, one with 0r   and one with 0r  . 

Solution. To plot 3,
4

P
   

 
, we start with a clockwise rotation of 

4


 radians from the polar axis and 

follow up by moving 3 units in the opposite direction from the pole. 

Figure 6.1. 25 
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 Since P  lies on the terminal side of 
3

4


, one alternate representation for P  is 

3
3,

4

 
 
 

. 

 To find a different representation for P  with 3r   , we may choose any angle coterminal with 

4


 .  We select 

7

4

  , for a representation of P  as 
7

3,
4

  
 

. 

Figure 6.1. 26 

 

Figure 6.1. 27 

 

  

Now that we have some practice plotting points in polar coordinates, it should come as no surprise that 

any given point expressed in polar coordinates has infinitely many other representations.  The following 

property summarizes characteristics of different polar coordinates that determine the same point in the 

plane. 

Equivalent Representations of a Point P  in Polar Coordinates  ,r θ  

 The polar coordinates  , 2r k  , for any integer k , represent the same point P . 

 The polar coordinates   , 2 1r k    , for any integer k , represent the same point P . 

As verification of the above characteristics, note that the polar coordinates  ,r   and  , 2r k   

represent the same point since   and 2 k   have the same terminal side.  To have an equivalent 

representation with r  in place of r , the terminal side of the corresponding angle must be on the 

opposite side of the terminal side of angle  .  Since the terminal sides of the angles   and    are 

opposite one another, the polar coordinates  ,r   and   , 2 1r k     represent the same point. 

In the special case where 0r  , all polar coordinates  0,  represent the same point (the pole) regardless 

of the value of  . 
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Converting Between Rectangular and Polar Coordinates 

Next, we connect the polar coordinate system with the Cartesian (rectangular) coordinate system so that 

we can convert coordinates from one system to the other.  We relate the pole and polar axis in the polar 

system to the origin and positive x-axis, respectively, in the rectangular system with the following result. 

Theorem 6.1. Conversion Between Rectangular and Polar Coordinates: Suppose P  is represented 

in rectangular coordinates as  ,x y  and in polar coordinates as  ,r  .  Then 

  cosx r   and  siny r   

 2 2 2x y r   

  tan
y

x
  , provided 0x   

To verify this result, we check out the three cases: 0r  , 0r   and 0r  . 

1. In the case 0r  , the theorem is an immediate consequence of Theorem 1.4.  Recall that 

   

   

cos cos

sin sin

x
x r

r
y

y r
r

 

 

  

  
 

Additionally, the theorem states that 

2 2 2x y r   

Figure 6.1. 28 

 

We apply the quotient identity    
 

sin
tan

cos





  to verify that  tan

y

x
  . 

2. If 0r  , then an alternate representation for  ,r   is  ,r    .   

Figure 6.1. 29 

 

Using    cos cos      and    sin sin     , we apply Theorem 1.4 as follows: 
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cos

cos

cos

x r

r

r

 





  

  



 

   
    

 

sin

sin

sin

y r

r

r

 





  

  



 

Moreover,  22 2 2x y r r     and    tan tan
y

x
     , so the theorem is true in this case. 

3. The remaining case is 0r  , where    , 0,r    is the pole.  Since the pole is identified with 

the origin,  0,0  in rectangular coordinates, proving the theorem in this case amounts to 

checking ‘ 0 0 ’. 

The following examples put Theorem 6.1 to good use. 

Example 6.1.8. Convert the point 
5

4,
3

 
 
 

, in polar coordinates, to rectangular coordinates. 

Solution. We convert   5
, 4,

3
r

    
 

 to rectangular coordinates as follows. 

 cos

5
4cos

3

1
4

2

2

x r 





   
 

   
 



 

 sin

5
4sin

3

3
4

2

2 3

y r 





   
 

 
   

 

 

 

The rectangular coordinates of the polar point 
5

4,
3

 
 
 

 are  2, 2 3 . 

  

Example 6.1.9. Convert each point in rectangular coordinates, given below, to polar coordinates with 

0r   and 0 2   .  Check each answer by converting back to rectangular coordinates. 

 1.  2, 2 3P   2.  3, 3Q    3.  0, 3R   4.  3,4S   

Solution. 
1. Even though we are not explicitly told to do so, we can avoid many common mistakes by 

determining which quadrant  2, 2 3P   is in, which we will do by plotting it. 
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Figure 6.1. 30 

 

Plotting  2, 2 3P   shows that P  lies in Quadrant IV.  With 2x   and 2 3y   , we use 

2 2 2r x y   to get 

 

   
  

222 2 2 3

4 4 3

16

r   

 


 

So 4r    and, since we want 0r  , we choose 4r  .  To find  , we use  tan
y

x
  , with 

2x   and 2 3y   , to get   2 3
tan 3

2
 

   .  This tells us that   has a reference angle of 

3


 and, since   is a Quadrant IV angle, 

5

3

  .  Note that this value for   also meets the 

requirement that 0 2   .  Thus, we can write P  in polar coordinates as 
5

4,
3

 
 
 

. 

To check our answer, we revisit Example 6.1.8 where this result is confirmed. 

2. The point  3, 3Q    is in Quadrant III. 

Figure 6.1. 31 
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Using 3x y   , we get    2 22 3 3 18r      , so 18 3 2r     .  We are asked for 0r   

so we choose 3 2r  .  To determine  , with 3x y   , we start with   3
tan 1

3
 

 


.  Then 

  has a reference angle of 
4


 and, since Q  lies in Quadrant III, we choose 

5

4

  , which 

satisfies the requirement that 0 2   .  The point Q  in polar coordinates is 
5

3 2,
4

 
 
 

. 

To check, we find 

 

 

 

cos

5
3 2 cos

4

2
3 2

2
3

x r 





   
 

 
  

 
 

 

 

 

 

sin

5
3 2 sin

4

2
3 2

2
3

y r 





   
 

 
  

 
 

 

The resulting point  3, 3   verifies our solution. 

3. The point  0, 3R   lies along the negative y-axis. 

Figure 6.1. 32 

 

In this case, since the pole is identified with the origin, we can easily tell that the point R  is 3 

units from the pole, which means that 3r    in the polar representation,  ,r  , for R .  Since we 

require 0r  , we choose 3r  .  Then the angle 
3

2

  , with its terminal side along the negative 

y-axis, satisfies 0 2   .  So R  in polar coordinates is 
3

3,
2
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To check, we note 

 

  

cos

3
3cos

2

3 0

0

x r 





   
 




 

 

  

sin

3
3sin

2

3 1

3

y r 





   
 

 
 

 

The point  0, 3  verifies our solution. 

4. The point  3,4S   lies in Quadrant II. 

Figure 6.1. 33 

 

With 3x    and 4y  , we find    2 22 3 4 25r     , so that 5r   .  We choose 5 0r    and 

proceed to determine  .  From 3x    and 4y  , we have   4
tan

3
 


.  Noting that 

4

3
  is not 

the tangent of any angle having a standard reference angle, we resort to using the arctangent 

function.  Now,   lies in Quadrant II and must satisfy 0 2    so we choose 

4
arctan

3
      

 
 radians.  So S  in polar coordinates is 

4
5, arctan

3
     

  
.  Using a calculator, 

an approximate value for   is 2.21 radians, from which S  is approximately  5,2.21 . 

Checking our answer requires a bit of tenacity since we need to simplify expressions of the form 

4
cos arctan

3
     

  
 and 

4
sin arctan

3
     

  
.  These are good review exercises and are hence 

left to the reader.  We find 
4 3

cos arctan
3 5

      
  

 and 
4 4

sin arctan
3 5

     
  

, so that 

   









x

y   3,4S 
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cos

3
5

5
3

x r 

   
 

 

 

 

 

sin

4
5

5
4

y r 

   
 



 

This gives us the original rectangular coordinates,  3,4 . 

  

Now that we’ve converted representations of points between the rectangular and polar coordinate 

systems, we move on to converting equations from one system to the other.  Just as we have used 

equations in x  and y  to represent relations in rectangular coordinates, equations in the variables r  and 

  represent relations in polar coordinates.  

Converting Equations from Rectangular to Polar Coordinates 

One strategy to convert an equation from rectangular to polar coordinates is to replace every occurrence 

of x  with  cosr   and every occurrence of y  with  sinr  , and to then use identities to simplify.  This 

is the technique we employ in the following three examples. 

Example 6.1.10. Convert  2 23 9x y    from an equation in rectangular coordinates to an 

equation in polar coordinates. 

Solution. We substitute  cosx r   and  siny r   into  2 23 9x y    and then simplify. 

 

 

     
     

     
      

   
  

2 2

2 2

2 2 2 2

2 2 2 2

2 2 2

2

subtract

0

3 9

cos 3 sin 9

h s

cos 6 c

 9 from bot  side

Py

c

thagorean identity

c

os 9 sin 9

cos 6 cos sin 0

os sin 6 os 0

1 6 cos 0

6cos

x y

r r

r r r

r r r

r r

r r

r r

 

  

  

  





  

  

   

  

  

 

 

 

Then 0r   or  6cosr  .  We note that the equation  2 23 9x y    describes a circle, as shown in 

the following graph. 
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Figure 6.1. 34 

 

The solution 0r   describes only one point (namely the pole/origin), so is not the polar equation of the 
circle.  The solution  6cosr   includes the pole and is the polar equation of the circle with rectangular 

form  2 23 9x y   . 

  

Example 6.1.11. Convert y x   from an equation in rectangular coordinates to an equation in polar 

coordinates. 

Solution. We substitute  cosx r   and  siny r   into y x  . 

 
   

   
    

sin cos

sin cos 0

sin cos 0

y x

r r

r r

r

 

 

 

 

 

 

 

 

This gives 0r   or    sin cos 0   .  We note that the equation y x   describes a line, which is 

graphed below. 

Figure 6.1. 35 
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The solution 0r   is not the polar equation of this line.  Now, 
4

    satisfies the equation 

   sin cos 0   .  The polar equation 
4

    describes all points ,
4

r
  

 
, for any value of r  

(positive, negative, or zero).  Graphically, this is the line containing the terminal side of the angle 

4

   , whose rectangular equation is y x  .  Hence, our solution is 
4

   .2 

  

Example 6.1.12. Convert 2y x  from an equation in rectangular coordinates to an equation in polar 

coordinates. 

Solution. We substitute  cosx r   and  siny r   into 2y x . 

 

    
   

   
    

2

2

2 2

2 2

2

sin cos

sin cos

0 cos sin

0 cos sin

y x

r r

r r

r r

r r

 

 

 

 







 

 

 

Either 0r   or    2cos sinr   .  Since 0r   is not the polar equation of this parabola, we now can 

solve the latter equation for r  by dividing both sides of the equation by  2cos  .  As a rule, we never 

divide through by a quantity that may be equal to 0.  In this particular case, we are safe since if 

 2cos 0   then  cos 0   and, for the equation    2cos sinr    to hold, then  sin   would also 

have to be 0.  There are no angles with both  cos 0   and  sin 0  .  Thus, we are not losing any 

information by dividing both sides of    2cos sinr    by  2cos  .  Doing so, we get 

 

 
 

 
 
 

   

2

sin

cos

sin1

cos cos

sec tan

r




 

 



 



 

 
2 Or we could take it to be 

4
k

     for any integer k. 
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Figure 6.1. 36 

 
The solution    sec tanr    includes the pole and is the polar equation of the parabola 2y x . 

  

Converting Equations from Polar to Rectangular Coordinates 

Converting equations from polar to rectangular coordinates is generally not as straightforward as the 

reverse process.  We begin with the strategy of writing the polar equation in an equivalent form so that the 

left hand side of one of the following presents itself: 2 2 2r x y  ,  cosr x  ,  sinr y  , or 

 tan
y

x
  . 

Example 6.1.13. Convert 3r    from an equation in polar coordinates to an equation in rectangular 

coordinates. 

Solution. We can start by squaring both sides of 3r   . 

  22

2

3

3

9

r

r

r

 

 



 

We may now substitute 2 2 2r x y   to get the equation 2 2 9x y  . 

x

y

     













  2y x
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Figure 6.1. 37 

 

As we have seen, squaring an equation does not, in general, produce an equivalent equation.  The concern 

here is that 2 9r   might be satisfied by more points than 3r   .  On the surface, this appears to be the 

case since 2 9r   is equivalent to 3r   , not just 3r   .  However, any point with polar coordinates 

 3,  can be represented as  3,   .  This means that any point  ,r   whose polar coordinates 

satisfy the relation 3r    has an equivalent3 representation that satisfies 3r   .  Thus, we state our final 

solution as 2 2 9x y  . 

  

Example 6.1.14. Convert 
4

3

   from an equation in polar coordinates to an equation in 

rectangular coordinates. 

Solution.  We begin by taking the tangent of both sides of the equation. 

  

 

4

3
4

tan tan
3

tan 3









   
 



 

Since  tan
y

x
  , we get 3

y

x
 , from which 3y x . 

 
3 Here, ‘equivalent’ means they represent the same point in the plane.  As ordered pairs, (3,0) and (−3, π) are 
different, but when interpreted as polar coordinates, they correspond to the same point in the plane.  
Mathematically speaking, relations are sets of ordered pairs, so the equations 2 9r   and 3r    represent different 
relations since they correspond to different sets of ordered pairs.  Since polar coordinates were defined 
geometrically to describe the location of points in the plane, however, we concern ourselves only with ensuring that 
the sets of points in the plane generated by two equations are the same.  This was not an issue, by the way, in 
algebra when we first defined relations as sets of points in the plane.  Back then, a point in the plane was identified 
with a unique ordered pair given by its Cartesian coordinates. 

1 2

  3r  
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Figure 6.1. 38 

 

Since all solutions to  tan 3  , 
3

k
    for integers k , represent the same line as 

4

3

  , the 

equation  tan 3   is equivalent to 
4

3

  .  Thus, we conclude that our answer of 3y x  is 

correct. 

  

Example 6.1.15. Convert  1 cosr    from an equation in polar coordinates to an equation in 

rectangular coordinates. 

Solution. Once again, we need to manipulate  1 cosr    a bit before using the conversion formulas 

given in Theorem 6.1.  We could square both sides of this equation like we did in Example 6.1.13 to 

obtain an 2r  on the left side, but that does nothing helpful for the right side.  Instead, we begin by 

multiplying both sides by r . 

 

 
 

 

  
 

2

2

22 2

22 2 2 2

multiply through by 

square both sides

convert from polar to rectangular coordinates

1 cos

cos

cos

cos

r

r r r

r r r

r r r

x x x y

r

y









 

 

 

 

   

 

We have the equation  22 2 2 2x y x x y     as a solution. 

  

Following is a graph of this polar equation,  1 cosr   . 
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Figure 6.1. 39 

 

It is easier to express certain relations in polar form than Cartesian form; for example, the circle 4r  , 

the line 
3

  , or the curve in the previous example.  The curve in the previous example is referred to as 

a cardioid.  We will graph cardioids, along with other polar equations, in Section 6.2. 

 

   1 cosr  
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6.1 Exercises 

In Exercises 1 – 16, each point is given in polar coordinates.  Plot the point and then give three additional 

representations for the point such that 

 (a) 0r   and 0 2    (b) 0r   and 2 0     (c) 0r   and 2 4     

 1. 2,
3

 
 
 

 2. 
7

5,
4

 
 
 

 3. 
1 3

,
3 2

 
 
 

 4. 
5 5

,
2 6

 
 
 

 

 5. 
7

12,
6

  
 

 6. 
5

3,
4

  
 

 7.  2 2,   8. 
7 13

,
2 6

  
 

 

 9.  20,3  10. 
5

4,
4

  
 

 11. 
2

1,
3

  
 

 12. 3,
2

  
 

 

 13. 
11

3,
6

   
 

 14. 2.5,
4

   
 

 15. 
4

5,
3

   
 

 16.  ,    

In Exercises 17 – 36, convert the point from polar coordinates to rectangular coordinates. 

 17. 
7

5,
4

 
 
 

 18. 2,
3

 
 
 

 19. 
7

11,
6

  
 

 20.  20,3  

 21. 
3

,
5 2

 
 
 

 22. 
5

4,
6

  
 

 23. 
7

9,
2

 
 
 

 24. 
9

5,
4

   
 

 

 25. 
13

42,
6

 
 
 

 26.  117,117  27.   6,arctan 2  28.   10,arctan 3  

 29. 
4

3,arctan
3

     
  

 30. 
4

5,arctan
3

    
  

 31.   ,arctan   32. 
12

13,arctan
5

  
  
  

 

 33. 
1

2, arctan
2

     
  

  34.  1
, arctan 5

2
   

 
 

 35. 
3

1, arctan
4

      
  

 36.  2
, arctan 2 2

3
  

 
 

In Exercises 37 – 56, convert the point from rectangular coordinates to polar coordinates with 0r   and 

0 2   . 

 37.  0,5  38.  3, 3  39.  7, 7  40.  3, 3   
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 41.  3,0  42.  2, 2  43.  4, 4 3   44. 
3 1

,
4 4

 
  

 
 

 45. 
3 3 3

,
10 10

 
   
 

 46.  5, 5   47.  6,8  48.  5,2 5  

 49.  8,1  50.  2 10,6 10  51.  5, 12   52. 
5 2 5

,
15 15

 
   
 

 

 53.  24, 7  54.  12, 9  55. 
2 6

,
4 4

 
  
 

 56. 
65 2 65

,
5 5

 
  
 

 

In Exercises 57 – 76, convert the equation from rectangular coordinates to polar coordinates.  Solve for r  

in all but Exercises 60 – 63.  In Exercises 60 – 63, solve for  , assuming 0    . 

 57. 6x   58. 3x    59. 7y   60. 0y   

 61. y x   62. 3y x  63. 2y x  64. 2 2 25x y   

 65. 2 2 117x y   66. 4 19y x   67. 3 1x y   68. 23y x   

 69. 24x y  70. 2 2 2 0x y y    71. 2 24 0x x y    72. 2 2x y x   

 73. 2 27y y x   74.  2 22 4x y    75.  22 3 9x y    76. 
2

2 1
4 4 1

2
x y    

 
 

In Exercises 77 – 96, convert the equation from polar coordinates to rectangular coordinates. 

 77. 7r   78. 3r    79. 2r   80. 
4

   

 81. 
2

3

   82.    83. 
3

2

   84.  4cosr   

 85.  5 cosr   86.  3sinr   87.  2sinr    88.  7secr   

 89.  12 cscr   90.  2secr    91.  5 cscr    92.    2sec tanr    

 93.  2 sin 2r   94.  1 2cosr    95.  1 sinr    96.    csc cotr     

97. Convert the origin  0,0  to polar coordinates in four different ways. 

98. Use the Law of Cosines to develop a formula for the distance between two points in polar coordinates. 
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6.2 Graphing Polar Equations 

Learning Objectives 

 Graph polar equations. 

 From their equations, identify the shape and location of polar graphs in the 

polar plane. 

In this section, we discuss how to graph polar equations.  A polar equation is an equation involving polar 

coordinates  ,r  .  Some examples of polar equations are  4r  , 
3

2

   , and  4 2sinr   .  Since 

any point in the plane has infinitely many different representations in polar coordinates, practice with 

graphing polar equations will be an essential part of the learning process.  We begin with a definition. 

Definition 6.1. The graph of a polar equation is the set of all points  ,P r   that satisfy the equation. 

Plotting Polar Equations of the Form =r a  and =  , for constants a  and   

Our first example focuses on some of the more structurally simple polar equations. 

Example 6.2.1. Graph the following polar equations. 

 1. 4r   2. 3 2r    3. 
5

4

   4. 
3

2

    

Solution. In each of these equations, only r  or   is present, resulting in the missing variable taking on 

all values without restriction.  This makes these graphs easier to visualize than graphs of other polar 

equations. 

1. The variable   does not appear in the equation 4r  .  Therefore, the graph of this equation is all 

points that have a polar coordinate representation  4, , for any choice of  .  Graphically, this 

translates into tracing out all points that are 4 units away from the pole.  This is exactly the 

definition of a circle centered at the pole with a radius of 4. 
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Figure 6.2. 1 

 

2. Once again, the variable   does not appear in the equation, 3 2r   .  Plotting all points of the 

form  3 2,  gives us a circle of radius 3 2 4.24  centered at the pole. 

Figure 6.2. 2 

 

3. The variable r  does not appear in the equation 
5

4

  , so we plot all points with polar 

representations 
5

,
4

r
 

 
 

.  What we find is that we are tracing out the line that contains the 

terminal side of 
5

4

  , when plotted in standard position. 
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Figure 6.2. 3 

 

4. As in the previous problem, the variable r  does not appear in the equation, 
3

2

   .  Plotting 

3
,

2
r

  
 

 for all values of r  results in tracing out the vertical line that passes through the pole. 

Figure 6.2. 4 

 

  

Example 6.2.1 leads us to the following. 

Graphs of Polar Equations =r a  and   , for constants a  and   

 The graph of the polar equation r a  is a circle centered at the pole that has radius a .  If 0a  , 

the graph is one single point (the pole). 

 The graph of the polar equation    is the line containing the terminal side of  , when   is 

plotted in standard position. 
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Graphing Polar Equations of the Form  = sinr a θ  or  = cosr a θ , a 0  

In general, to graph equations of the form  sinr a   or  cosr a  , we choose values for the 

independent variable  , determine corresponding values of the dependent variable r , and then plot the 

resulting polar coordinates  ,r  . 

Example 6.2.2. Graph the polar equation  6cosr  . 

Solution. We start by choosing some standard angle values for  .  After generating the table below, 

the resulting points are graphed in the plane.4 

   6cosr    ,r       6cosr    ,r   

0 6  6,0   
4

3


 −3 

4
3,

3

  
 

 

3


 3 3,

3

 
 
 

  
3

2


 0 

3
0,

2

 
 
 

 

2


 0 0,

2

 
 
 

  
5

3


 3 

5
3,

3

 
 
 

 

2

3


 −3 

2
3,

3

  
 

  2  6  6,2  

  −6  6,      
 

Figure 6.2. 5 

Despite having nine ordered pairs, we only get four distinct points on the graph.  For this reason, we 

employ a slightly different strategy.  We graph  6cosr   in the r -plane5 and use it as a guide for 

graphing the equation in the polar plane. 

We first see that as   ranges from 0 to 
2


, r  ranges from 6 to 0.  In the polar plane, this means the curve 

starts 6 units from the pole on the polar axis, when 0  , and gradually returns to the pole, at 
2

  . 

 
4 Note that values for θ were chosen here to result in cosine values of 0, 1 , or 

1

2
 , allowing for easier calculations 

of r.  Including additional values for θ would result in additional points that would make graphing easier. 
5 This graph looks exactly like y = 6 cos(x) in the xy-plane, and for good reason.  At this stage, we are just graphing 
the relationship between r and θ before we interpret them as polar coordinates (r, θ) in the polar plane. 

1 2 3 4 5
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Figure 6.2. 6 

 

 6cosr   in the r -plane 

Figure 6.2. 7 

 

 6cosr   in the polar plane 

The arrows drawn in the above figures are meant to help you visualize this process.  In the r -plane, the 

vertical arrows are drawn from the  -axis to the curve  6cosr  .  In the polar plane, each of the 

arrows corresponds to those drawn in the r -plane, by rotating through an angle of   from the polar 

axis and then plotting a point r  units from the pole. 

Next, we repeat the process as   ranges from 
2


 to  .  Between 

2


 and  , the r -values are negative.  

This means that in the polar plane, instead of graphing in the region corresponding to Quadrant II, we 

graph in the region corresponding to Quadrant IV. 

Figure 6.2. 8 

 

 6cosr   in the r -plane 

Figure 6.2. 9 

 

 6cosr   in the polar plane 

As   ranges from   to 
3

2


, the r -values are still negative, which means the graph is traced out in the 

region corresponding to Quadrant I instead of the region corresponding to Quadrant III.  Since r  for 
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θ 
θ  

  6,0
  ,r 

 

0,
2

 
 
 

 

3,
3

 
 
 

 

 r






















 COORDINATES

θ 

θ  
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  6,

 

0,
2

 
 
 

  2
3,

3
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these values of   matches the r  values for   in 0,
2

 
  

, the curve begins to retrace itself at this point.  

Proceeding further, we find that when 
3

2
2

    , we retrace the part of the curve that we first traced 

out as 
2

    .  The reader is invited to verify that plotting any range of   outside the interval  0,  

results in retracing some portion of the curve.  We present the final graph below. 

Figure 6.2. 10 

 

 6cosr   in the r -plane 

Figure 6.2. 11 

 

 6cosr   in the polar plane 

  

The graph of  6cosr   looks suspiciously like a circle, for good reason.  We can convert this polar 

equation to a rectangular equation through multiplying both sides by r , to give us  2 6 cosr r  .  We 

substitute 2 2 2r x y   and  cosr x   to get 

 

 

2 2

2 2

2 2

2 2

6

6 0

6 9 9

3 9

x y x

x x y

x x y

x y

 

  

   

  

 

This rectangular equation is easily recognizable as a circle in the xy-plane with center  3,0 and radius 

9 3 .  Any polar equation of the form  sinr a   or  cosr a  , where a  is a non-zero constant, 

represents a circle, as summarized below.  Recall that r a  also represents a circle, as discussed earlier. 









 

 r

  1 2 3 4 5

θ 
θ  
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Graphs of Polar Equations  = cosr a θ  and  = sinr a θ , 0a   

 The graph of polar equation  cosr a  , 0a  , is a circle centered at the polar point ,0
2

a 
 
 

 

with radius 
2

a
.  

 The graph of polar equation  sinr a  , 0a  , is a circle centered at the polar point ,
2 2

a  
 
 

 

with radius 
2

a
. 

An example of a polar equation of the form  sinr a  , 0a  , is  5sinr   .  From the information 

in the preceding box, this is a circle centered at 
5

,
2 2

  
 

  with radius 
5 5

2 2
  .  With this information, 

plotting a few points is sufficient to draw the graph, as follows. 

   5sinr     ,r   

0 0  0,0  

6


 

5

2
  

5
,

2 6

  
 

 

2


 5  5,

2

  
 

 

5

6


 

5

2
  

5 5
,

2 6

  
 

 

  0  ,0  
 

Figure 6.2. 12 

 
 5sinr    

Note that the graph of  6cosr   is symmetric about the polar axis, while the graph of  5sinr    is 

symmetric about the vertical line 
2

  .  The following tests for symmetry may prove helpful in 

graphing polar equations. 

Symmetry in Graphs of Polar Equations: If a polar equation is unchanged when  

   is replaced by  , the graph is symmetric about the polar axis; 

 r  is replaced by r , the graph is symmetric about the pole; 

   is replaced by   , the graph is symmetric about the vertical line 
2

  . 
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For  6cosr  , symmetry about the polar axis can be verified by noting that    6cos 6cos   , 

since cosine is an even function.  To verify that the graph of  5sinr    is symmetric about the line 

2

  , we have 

 

         
       
 

5sin 5 sin cos cos sin

5 0 cos 1 sin

5sin

     

 



       
      
 

 

While noting that recognizing the symmetry of  6cosr   in Example 6.2.2 could have shortened the 

graphing process, we will primarily use symmetry as a check for our graphs in this section.   

Graphing Polar Equations of the Form  = sinr a b θ  or  = cosr a b θ , 

a > 0  and b > 0  

Example 6.2.3. Graph the polar equation  4 2sinr   . 

Solution. Once again, we begin with a table of values. 

   4 2sinr     ,r       4 2sinr     ,r   

0 4  4,0   
7

6


 5 

7
5,

6

 
 
 

 

6


 3 3,

6

 
 
 

  
3

2


 6 

3
6,

2

 
 
 

 

2


 2 2,

2

 
 
 

  
11

6


 5 

11
5,

6

 
 
 

 

5

6


 3 

5
3,

6

 
 
 

  2  4  4,2  

  4  4.      

 

We first plot the fundamental cycle of  4 2sinr    in the r -plane.  To help visualize what is going 

on graphically, we divide  0,2  into the four subintervals 0,
2

 
  

, ,
2

  
  

, 
3

,
2

 
  

, and 
3

,2
2

  
  

, 

then proceed as we did in Example 6.2.2. 
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1. As   ranges from 0 to 
2


, r  decreases from 4 to 2.  This means that in the polar plane, the curve 

starts 4 units from the pole on the polar axis, when 0  , and gradually pulls in toward a point 2 

units from the pole, at 
2

  . 

Figure 6.2. 13 

 

 4 2sinr    in the r -plane 

Figure 6.2. 14 

 

 4 2sinr    in the polar plane 

2. Next, as   runs from 
2


 to  , we see that r  increases from 2 to 4.  In the polar plane, picking 

up where we left off, we gradually pull the graph toward the point 4 units away from the pole, at 

  .  

Figure 6.2. 15 

 

 4 2sinr    in the r -plane 

Figure 6.2. 16 

 

 4 2sinr    in the polar plane 

3. Over the interval 
3

,
2

 
  

, we see that r  increases from 4 to 6.  In the polar plane, the curve 

sweeps out away from the point 4 units from the pole, at   , to a point 6 units from the pole, 

at 
3

2

  . 


 


 







θ 
θ 

 

 r
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Figure 6.2. 17 

 

 4 2sinr    in the r -plane 

Figure 6.2. 18 

 

 4 2sinr    in the polar plane 

4. Finally, as   takes on values from 
3

2


 to 2 , r  decreases from 6 back to 4.  The graph in the 

polar plane pulls in from the point 6 units from the pole, at 
3

2

  , to finish where we started. 

Figure 6.2. 19 

 

 4 2sinr    in the r -plane 

Figure 6.2. 20 

 

 4 2sinr    in the polar plane 

We leave it to the reader to verify that plotting points corresponding to values of   outside the interval 

 0,2  results in retracing portions of the curve.  The final graph is symmetric about the line 
2

  , as 

can be verified by showing that    4 2sin 4 2sin      . 



T6-36 Polar Coordinates and Applications 
 

Figure 6.2. 21 

 

 4 2sinr    in the r -plane 

Figure 6.2. 22 

 

 4 2sinr    in the polar plane 

  

The following example is similar, but with an interesting ‘twist’ to the curve. 

Example 6.2.4. Graph the polar equation  2 4cosr   . 

Solution. Following is a table of values. 

   2 4cosr     ,r       2 4cosr     ,r   

0 6  6,0   
4

3


 0 

4
0,

3

 
 
 

 

3


 4 4,

3

 
 
 

  
3

2


 2 

3
2,

2

 
 
 

 

2


 2 2,

2

 
 
 

  
5

3


 4 

5
4,

3

 
 
 

 

2

3


 0 

2
0,

3

 
 
 

  2  6  6,2  

  −2  2,      

The first thing to note when graphing  2 4cosr    in the r -plane over the interval  0,2  is that 

the graph crosses through the  -axis.  This corresponds to the graph of the curve passing through the 

pole in the polar plane.  We note from the table of values, above, that 0r   when 
2

3

   or 
4

3

  .  

Since these values are of significance geometrically, we break the interval  0,2  into six subintervals: 

0,
2

 
  

, 
2

,
2 3

  
  

, 
2

,
3

  
  

, 
4

,
3

 
  

,
4 3

,
3 2

  
  

, and 
3

,2
2

  
  

. 
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1. As   ranges from 0 to 
2


, r  decreases from 6 to 2.  Plotting this in the polar plane, we start 6 

units out from the pole on the polar axis, when 0  , and slowly pull in toward a point 2 units 

from the pole, at 
2

  . 

Figure 6.2. 23 

 

 2 4cosr    in the r -plane 

Figure 6.2. 24 

 

 2 4cosr    in the polar plane 

2. On the interval 
2

,
2 3

  
  

, r  decreases from 2 to 0, which means the polar graph is heading into 

(and will eventually cross through) the pole.  Not only do we reach the pole when 
2

3

  , the 

curve hugs the line 
2

3

   as it approaches the pole. 

Figure 6.2. 25 

 

 2 4cosr    in the r -plane 

Figure 6.2. 26 

 

 2 4cosr    in the polar plane 
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3. On the interval 
2

,
3

  
  

, r  ranges from 0 to −2.  Since 0r  , the curve passes through the pole 

in the polar plane, following the line 
2

3

  , and continues upward toward the polar axis, 

stopping on the polar axis at a point 2 units to the right of the pole. 

Figure 6.2. 27 

 

 2 4cosr    in the r -plane 

Figure 6.2. 28 

 

 2 4cosr    in the polar plane 

4. Next, as   progresses from   to 
4

3


, r  ranges from −2 to 0.  With 0r  , the polar graph 

continues a gradual return to the pole, following the line 
4

3

   as it gets closer. 

Figure 6.2. 29 

 

 2 4cosr    in the r -plane 

Figure 6.2. 30 

 

 2 4cosr    in the polar plane 
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5. On the interval 
4 3

,
3 2

  
  

, r  returns to positive values and increases from 0 to 2.  The polar 

graph hugs the line 
4

3

   as it moves through the pole and heads toward a point 2 units from 

the pole, at 
3

2

  . 

Figure 6.2. 31 

 

 2 4cosr    in the r -plane 

Figure 6.2. 32 

 

 2 4cosr    in the polar plane 

6. In the last step, as   runs through 
3

2


 to 2 , r  increases from 2 to 6, and we end up back 

where we started, 6 units from the pole on the polar axis. 

Figure 6.2. 33 

 

 2 4cosr    in the r -plane 

Figure 6.2. 34 

 

 2 4cosr    in the polar plane 

Again, the reader is invited to show that plotting the curve for values of   outside  0,2  results in 

retracing a portion of the curve already traced.  We conclude this example with a final graph.  Note the 

symmetry about the polar axis. 
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Figure 6.2. 35 

 

 2 4cosr    in the r -plane 

Figure 6.2. 36 

 

 2 4cosr    in the polar plane 

  

The polar curves in the previous two examples are limaçons, identified by a polar equation of the form 

 sinr a b    or  cosr a b   , where 0a   and 0b  .  In Example 6.2.4, the inner loop is a 

property of limaçons in which a b .  Another case worthy of note is a limaçon in which a b .  This 

curve is referred to as a cardioid, as demonstrated in the following graph.  Can you guess where the 

designation ‘cardioid’ comes from? 

Figure 6.2. 37 

 

 3 3sinr    

Graphing Polar Equations of the Form  = sinr a nθ  or  = cosr a nθ , a 0  

Example 6.2.5. Graph the polar equation  5sin 2r  . 

Solution. Once again, we begin with a table of values, being a bit creative in using input values of   

that will result in helpful output values for  sin 2 . 
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 5sin 2

r




  ,r       5sin 2

r




  ,r      
 5sin 2

r




  ,r   

0 0  0,0   
3

4


 −5 

3
5,

4

  
 

  
3

2


 0 

3
0,

2

 
 
 

 

12


 

5

2
 

5
,

2 12

 
 
 

  
11

12


 

5

2
  

5 11
,

2 12

  
 

  
19

12


 

5

2
  

5 19
,

2 12

  
 

 

4


 5 5,

4

 
 
 

    0  0,   
7

4


 −5 

7
5,

4

  
 

 

5

12


 

5

2
 

5 5
,

2 12

 
 
 

  
13

12


 

5

2
 

5 13
,

2 12

 
 
 

  
23

12


 

5

2
  

5 23
,

2 12

  
 

 

2


 0 0,

2

 
 
 

  
5

4


 5 

5
5,

4

 
 
 

  2  0  0,2  

7

12


 

5

2
  

5 7
,

2 12

  
 

  
17

12


 

5

2
 

5 17
,

2 12

 
 
 

     

We start by graphing the subintervals 0,
4

 
  

, ,
4 2

  
  

, 
3

,
2 4

  
  

, and 
3

,
4

  
  

. 

1. As   ranges from 0 to 
4


, r  increases from 0 to 5.  This means the graph of  5sin 2r   in the 

polar plane starts at the pole and gradually sweeps out so that it is 5 units away from the pole at 

4

  . 

Figure 6.2. 38 

 

 5sin 2r   in the r -plane 

Figure 6.2. 39 

 

 5sin 2r   in the polar plane 
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2. Next, we see that r  decreases from 5 to 0 as   runs through ,
4 2

  
  

 and, furthermore, r  is 

heading toward negative values as the graph crosses the  -axis at 
2


 in the r -plane.  Hence, in 

the polar plane, we draw the curve hugging the line 
2

   as the curve heads toward the pole. 

Figure 6.2. 40 

 

 5sin 2r   in the r -plane 

Figure 6.2. 41 

 

 5sin 2r   in the polar plane 

3. As   runs from 
2


 to 

3

4


, r  becomes negative and ranges from 0 to −5.  The polar curve starts 

at the pole and stops at a distance of 5 units from the pole, at the point 
3

5,
4

  
 

. 

Figure 6.2. 42 

 

 5sin 2r   in the r -plane 

Figure 6.2. 43 

 

 5sin 2r   in the polar plane 

4. For 
3

4

    , r  increases from −5 to 0, so the polar curve pulls back to the pole. 
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Figure 6.2. 44 

 

 5sin 2r   in the r -plane 

Figure 6.2. 45 

 

 5sin 2r   in the polar plane 

Below, we continue our sketch of the graph from    to 2  . 

Figure 6.2. 46 

 

 5sin 2r   in the r -plane 

Figure 6.2. 47 

 

 5sin 2r   in the polar plane 

Below is the final graph. 

Figure 6.2. 48 

 

 5sin 2r   in the r -plane 

Figure 6.2. 49 

 

 5sin 2r   in the polar plane 
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The polar curve in Example 6.2.5 is a rose.  A polar equation of the form   sinr a n  or 

 cosr a n  will result in a graph having the shape of a rose, with n  petals if n  is odd or 2n  petals if 

n  is even. 

Graphing Polar Equations of the Form  22 2= sinr a θ  or  22 2= cosr a θ , 

a 0  

Example 6.2.6. Graph  2 16cos 2r  . 

Solution. We can make our task easier by first checking for symmetries.  Notice that replacing   by 

  does not change the equation: 

      16cos 2 16cos 2 16cos 2       

Thus, the graph is symmetric about the polar axis.  Also, the graph is symmetric about the pole since 

replacing r  by r  does not change the equation: 

     2 216cos 2 16cos 2r r      

To find points on the graph, we solve  2 16cos 2r   for r  to get  4 cos 2r   .  Since the graph is 

symmetric about the pole, we need only consider  4 cos 2r  , and since  cos 2  is undefined 

when  cos 2 0  , or 
3

4 4

   , we start with 0
4

  . 

   4 cos 2r    ,r   

0 4  4,0  

6


 

4
2.8

2
  4

,
62

 
 
 

 

4


 0 0,

4

 
 
 

 

 

Figure 6.2. 50 

 

 4 cos 2r  , 0
4
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Adding the symmetry about the polar axis, we have the following. 

Figure 6.2. 51 

 

Finally, incorporating the property of symmetry about the pole, we have the graph of  2 16cos 2r  . 

Figure 6.2. 52 

 

 2 16cos 2r   

  

The polar curve in Example 6.2.6 is a lemniscate.  Note that, instead of symmetry about the pole, we 

could have shown and used symmetry about the line 
2

  . 

This section ends with a summary of common polar graphs and their associated equations.  The exact 

location/orientation of the curves depends on the values of the constants and the specific function. 
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Polar Equation Description Representative Graph 

   Line passing through the Pole 

Figure 6.2. 53 

 

r a  Circle centered at the Pole 

Figure 6.2. 54 

 

 sinr a   

 

Circle touching the Pole 

with the center on the line 
2

   

Figure 6.2. 55 

 

 cosr a   
Circle touching the Pole 

with center on the Polar Axis 

Figure 6.2. 56 

 

 sinr a b    or 

 cosr a b    

0 b a   

Limaçon without inner loop 

Figure 6.2. 57 
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Polar Equation Description Representative Graph 

 sinr a b    or 

 cosr a b    

0 a b   

Limaçon with inner loop 

Figure 6.2. 58 

 

 sinr a a    or 

 cosr a a    
Cardioid 

Figure 6.2. 59 

 

 sinr a n  or  cosr a n  

n  odd 
Rose with n petals 

Figure 6.2. 60 

 

 sinr a n  or  cosr a n  

n  even 
Rose with 2n  petals 

Figure 6.2. 61 

 

 2 2 sin 2r a   

 2 2 cos 2r a   
Lemniscate 

Figure 6.2. 62 
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6.2 Exercises 

In Exercises 1 – 10, plot the graph of the polar equation by hand, without the aid of a calculator.  Label 

the polar axis and identify points that you use in plotting the graph.  

 1. Circle:  6sinr   2. Rose:  2sin 2r   

 3. Rose:  4cos 2r     4. Rose:  cos 5r   

 5. Cardioid:  3 3cosr    6. Cardioid:  2 2cosr    

 7. Limaçon:  1 2sinr    8. Limaçon:  3 5cosr     

 9. Limaçon:  5 3sinr    10. Lemniscate:  2 4cos 2r   

In Exercises 11 – 20, plot the graph of the polar equation by hand, without the aid of a calculator.  Label 

the polar axis and identify points that you use in plotting the graph. 

 11.  2cosr   12.  5 5sinr    

 13.  5sin 3r   14.  1 2cosr    

 15.  2 7sinr    16.  sin 4r   

 17.  3cos 4r   18.  2 3 4cosr    

 19.  1 sinr    20.    2 sin 2r   

Exercises 21 – 30 give you some curves to graph using a graphing calculator or other form of technology.  

Notice that some of the curves have explicit bounds on   and others do not. 

 21. r  , 0 12    22.  lnr  , 1 12    

 23.  0.1r e  , 0 12    24.  3r     , 1.2 1.2    

 25.    sin 5 3cosr     26. 3 2sin cos
2 3

r
        
   

 

 27.  arctanr  ,       28. 
 

1

1 cos
r





 

 29. 
 

1

2 cos
r





 30. 

 
1

2 3cos
r
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31. How many petals does the polar rose  sin 2r   have?  What about  sin 3r  ,  sin 4r   and 

 sin 5r  ?  With the help of your classmates, make a conjecture as to how many petals the polar 

rose   sinr n   has for any natural number n .  Replace sine with cosine and repeat the 

investigation.  How many petals does   cosr n   have for each natural number n ? 

32. In this exercise, we have you and your classmates explore transformations of polar graphs.  For both 

parts (a) and (b), let    cosf    and    2 sing    . 

a) Using a graphing calculator or other form of technology, compare the graph of  r f   to each 

of the graphs of 
4

r f
   

 
, 

3

4
r f

   
 

, 
4

r f
   

 
 and 

3

4
r f

   
 

.  Repeat the 

process for  g  .  In general, how do you think the graph of  r f     compares with the 

graph of  r f  ? 

b) Using a graphing calculator or other form of technology, compare the graph of  r f   to each 

of the graphs of  2r f  ,  1

2
r f  ,  r f    and  3r f   .  Repeat this process for 

 g  .  In general, how do you think the graph of   r k f   compares with the graph of 

 r f  ?  (Does it matter if 0k   or 0k  ?) 

33. With the help of your classmates, research cardioid microphones. 
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6.3 Polar Representations of Complex Numbers  

Learning Objectives 

 Find the real part, the imaginary part, the modulus, and the argument of a 

complex number. 

 Graph complex numbers. 

 Know and apply properties of complex numbers. 

Complex Numbers and the Complex Plane 

While the equation 2 1x    has no real solutions, it prompts us to look for a quantity x  whose square is 

1 .  We write such a quantity as i , or 1 , and refer to it as the imaginary unit.  The imaginary unit i  

is a different kind of number with the property that 2 1i   .  The properties of i  that distinguish it from 

the real numbers are listed below. 

Properties of i : The imaginary unit i  satisfies the following two properties. 

1. 2 1i    

2. If c  is a real number with 0c   then  c c i    

Property 1 establishes that i  does act as a square root of 1 .  Property 2 establishes what we mean by the 

‘principal square root’ of a negative real number.  For Property 2, it is important to remember the 

restriction on c , requiring that 0c  .  For example, 4 4 2i i   , but  4 4 i    .6  We are now 

ready to define complex numbers. 

Definition 6.2. A complex number is defined as z a bi   where a  and b  are real numbers and i  is 

the imaginary unit.  The number a  is the real part of the complex number, denoted  Re z , and the 

number b  is the imaginary part, denoted  Im z , of the complex number. 

The arithmetic of complex numbers is performed by treating i  as a variable, but with the additional two 

properties listed above. 

 
6 This would result in        22 4 4 4 2 2 2 1 2i i i i             which is, obviously, false. 
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Example 6.3.1. Perform the indicated operations.  Write your answer in the form a bi . 

 1. 3 12   2.    1 2 3 4i i    3.   2 3 2 1 3i i    4.  3

1 3 i   

Solution. 

1. We use Property 2 first, then apply rules of real radicals and Property 1. 

 

  

 

2

3 12 3 12

3 12

36 1

6

i i

i

  



 

 

 

2. Combining like terms, we get 

 
   1 2 3 4 1 2 3 4

2 6

i i i i

i

      

  
 

3. Using the distributive property results in 

 

              
 

 

2

2 3 2 1 3 2 3 1 2 3 3 2 1 2 3

2 3 2 3 2 2 3

2 3 6 2 2 3 1

4 3 4

i i i i i i

i i i

i i

i

        

    

    

  

 

4. Again using the distributive property, 

 

     
  
  

 
 

3

2

2
2

1 3 1 3 1 3 1 3

1 3 1 3 3 3

1 3 2 2 3

2 2 3 2 3 2 3

2 6

8

i i i i

i i i i

i i

i i i

        

     

    

   

  



 

  

The last problem implies that a solution of the equation 3 8w   is 1 3w i   , or that a third root of the 

number 8 is 1 3 i  .  Of course, a real valued solution to 3 8w  , or a third root of the number 8, is the 

number 2.  We will discuss finding all roots of a number in Section 6.4. 
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We can visualize complex numbers as follows.  Associate each complex number z a bi   with the point 

 ,a b  on the coordinate plane.  In this case, the x-axis is relabeled as the real axis, which corresponds to 

the real number line, and the y-axis is relabeled as the imaginary axis, which is demarcated in increments 

of the imaginary unit i .  The plane determined by these two axes is called the complex plane.  Several 

complex numbers are plotted in the following complex plane. 

Figure 6.3. 1 

 

Complex Plane 

Since the ordered pair  ,a b  gives the rectangular coordinates associated with the complex number 

z a bi  , the expression z a bi   is called the rectangular form of z .  Of course, we could just as 

easily associate z  with a pair of polar coordinates  ,r  .  Although it is not as straightforward as the 

definitions of  Re z  and  Im z , we can still give r  and   names in relation to z . 

Definition 6.3. The Modulus and Argument of Complex Numbers: Suppose z a bi   is a complex 

number.  Let  ,r   be the polar representation of the point having rectangular coordinates  ,a b , with 

0r   and 0 2   . 

 The modulus of z , denoted z , is defined by 2 2z r a b   . 

 For 0z  , the angle   is called the argument of z .7  For 0z  , the argument is not defined. 

Note that if 0b   then the modulus of z  is equal to the square root of 2a , and 2a a , which explains 

the use of the absolute value notation. 

 
7 The argument may be restricted to other intervals such as  ,  , in which case      . 
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Example 6.3.2. For each of the following complex numbers, find  Re z ,  Im z , z , and the 

argument  , 0 2   . 

 1. 3z i   2. 2 4z i    3. 3z i  4. 117z    

Solution. 

1. For  3 3 1z i i     , we have  Re 3z   and  Im 1z   .  We plot this complex 

number, with rectangular coordinates  3, 1 , in the complex plane. 

Figure 6.3. 2 

 

 

To find z  and  , we need a polar representation 

 ,r   for    , 3, 1a b   , with 0r   and 

0 2   .  Then, by Definition 6.3, 

   2 2 2
2

  from 

2

3 1

3 1

r r a b  

 


 

Thus, 2z r  . 

To determine  , we see that   is in Quadrant IV and that   1
tan

3

b

a
 

  .  Note that this is 

equivalent to    
 

Im z
tan =

Re z
θ .  To meet the requirement that 0 2   , we find 

11

6

  . 

2. The complex number 2 4z i    has  Re 2z    and  Im 4z  .  We plot the number 

2 4z i   , with rectangular coordinates  2,4 , in the complex plane. 
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Figure 6.3. 3 

 

We look for a polar representation  ,r   where 

0r  . 

   2 2
2 4

20

2 5

r   





 

Then 2 5z r  .  To find  , we use 

  4
tan 2

2
   


.  We will need to resort to using 

the arctangent since this is not a standard angle. 

 With  2,4  in Quadrant II and  arctan 2  in Quadrant IV, 

 
 
      since arctangent is an odd function

arctan 2

arctan 2

 

 

  

 
 

Note that  arctan 2    meets the requirement that 0 2   . 

3. We rewrite 3z i  as 0 3z i   to find  Re 0z   and  Im 3z  .  We plot the number 3z i  in 

the complex plane, using rectangular coordinates  0,3 . 

Figure 6.3. 4 

 

 

While we could go through the usual calculations 

to find the required polar form of this point, we can 

almost ‘see’ the answer.  The point  0,3  lies 3 

units away from the origin on the positive 

imaginary axis.   

 

Hence, 3z r   and 
2

  . 

4. As in the previous problem, we write 117z    as 117 0z i   , so  Re 117z    and 

 Im 0z  .  The number 117z   is the rectangular point  117,0  in the complex plane. 
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Figure 6.3. 5 

 

 

This is another instance where we can determine 

the polar form ‘by eye’.  The point  117,0  is 

117 units away from the origin along the negative 

real axis. 

 

Hence, 117z r   and   . 

  

Polar Form of Complex Numbers 
Our next goal is to link the geometry and algebra of the complex numbers.  To that end, consider the 

following figure. 

Figure 6.3. 6 

 

Polar coordinate  ,r   associated with z a bi  , 0r   and 0 2    

We know from Theorem 6.1 that  cosa r   and  sinb r  .  Making these substitutions for a  and 

b  gives 

    
    

cos sin

cos sin

z a bi

r r i

r i

 

 

 

 

 

 

The expression    cos sini   can be abbreviated  cis  , so that  cisz r  .  From r z , we have 

the following definition. 
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Definition 6.4. Polar Form of a Complex Number: Suppose z  is a complex number and   is the 

argument of z .  A polar form for z  is 

       cis cos sinz z i     

Other polar forms of z  are       cis 2 cos 2 sin 2z k z k i k           for integers k . 

Example 6.3.3. Find the rectangular form of the following complex numbers.  Identify  Re z  and 

 Im z . 

 1. 
2

4cis
3

z
   

 
 2. 

5
2cis

4
z

   
 

 3.  3cis 0z   4. cis
2

z
   
 

 

Solution. The key to finding the rectangular form of these complex numbers is to write  cis   as 

   cos sini  . 

1. By definition, 

 

2
4cis

3

2 2
4 cos sin

3 3

1 3
4

2 2

z

i

i



 

   
 

             
  

        

 

After simplifying, 2 2 3z i    so that  Re 2z    and  Im 2 3z  . 

2. Expanding, we get 

 

5
2cis

4

5 5
2 cos sin

4 4

2 2
2

2 2

z

i

i



 

   
 

             
  

         

 

Then 2 2z i   , so    Re 2 Imz z   . 

3. We have 

 

 
    
  

3cis 0

3 cos 0 sin 0

3 1 0

z

i

i
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Simplifying, 3z  , from which  Re 3z   and  Im 0z  .  Note that 3 is a real number, so it 

makes sense to have an imaginary part of 0. 

4. Lastly, 

 

 

cis
2

cos sin
2 2

0 1

z

i

i



 

   
 
       
   

 

 

We find z i ,  Re 0z  , and  Im 1z  . 

  

Example 6.3.4. Use the results from Example 6.3.2 to find a polar form of the following complex 

numbers. 

 1. 3z i   2. 2 4z i    3. 3z i  4. 117z    

Solution. To write a polar form of a complex number z , we need two pieces of information: the 

modulus z  and the argument   for z .  This information, for each of these complex numbers, was 

included in the solution to Example 6.3.2. 

1. For 3z i  , 2z   and 
11

6

  , so 
11

2cis
6

z
   

 
.  We can check our answer by converting 

it back to rectangular form to see that it simplifies to 3z i  . 

2. For 2 4z i   , 2 5z   and  arctan 2   .  Hence,   2 5 cis arctan 2z   .  It is a 

good exercise to show that this polar form reduces to 2 4z i   . 

3. Next, 3z i  has 3z   and 
2

  .  In this case, 3cis
2

z
   
 

.  This can be checked 

geometrically; rotate 
2


 radians counter-clockwise from the polar axis, about the pole, then move 

3 units from the pole along the resulting ray.  This positions you exactly 3 units above 0 on the 

imaginary axis at 3z i . 

4. Last but not least, for 117z   , 117z   and   .  So  117cisz  .  As in the previous 

problem, the answer is easily checked geometrically. 
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6.3 Exercises 

In Exercises 1 – 20, find a polar representation for the complex number z .  Identify  Re z ,  Im z , z , 

and the argument  , 0 2   .  These exercises should be worked without the aid of a calculator. 

 1.  9 9z i   2.  5 5 3z i   3.  6z i  4.  3 2 3 2z i    

 5.  6 3 6z i    6. 2z    7.  
3 1

2 2
z i    8.  3 3z i    

 9.  5z i   10. 6z   11. 3
 7z i  12.  2 2 2 2z i   

 13.  3 4z i   14. 2z i   15.  7 24z i    16.  2 6z i    

 17.  12 5z i    18.  5 2z i    19.  4 2z i   20.  1 3z i   

In Exercises 21 – 40, find the rectangular form of the given complex number.  Use whatever identities are 

necessary to find the exact values.  These exercises should be worked without the aid of a calculator.  

 21.   6 cis 0z   22.  2 cis
6

z
   
 

 23.  7 2 cis
4

z
   
 

 24.  3 cis
2

z
   

 
 

 25.  
2

4 cis
3

z
   

 
 26.  

3
6 cis

4
z

   
 

 27.   9 cisz   28.  
4

3 cis
3

z
   

 
 

 29.  
5

7 cis
4

z
   

 
 30.  

3
13 cis

2
z

   
 

 31.  
1 7

cis
2 4

z
   

 
 32.  

5
12 cis

3
z

   
 

 

 33.  8 cis
12

z
   

 
 34.  

7
2 cis

8
z

   
 

 

 35.  
4

5 cis arctan
3

z
       

 36.  
1

10 cis arctan
3

z
       

 

 37.    15 cis arctan 2z     38.    3 cis arctan 2z     

 39.  
7

50 cis arctan
24

z         
 40.  

1 5
cis arctan

2 12
z         
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41. The complex conjugate of a complex number  z a b i   is denoted z  and is given by  z a b i  . 

a) Prove that z z . 

b) Prove that z z z  . 

c) Show that  Re
2

z z
z


  and  

 
Im

2

z z
z

i


 .   
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6.4 Complex Products, Powers, Quotients, and Roots  

Learning Objectives 

 Find the product and quotient of complex numbers. 

 Find the power and roots of complex numbers. 

Products and Quotients of Complex Numbers 

The following theorem requires that complex numbers be written in polar form before making use of the 

formula. 

Theorem 6.2. Products and Quotients of Complex Numbers: Suppose z  and w  are complex 

numbers with polar forms  cisz z   and  cisw w  . 

 Product Rule:  cisz w z w     

(To multiply two complex numbers, multiply their moduli and add their arguments.) 

 Quotient Rule:  cis
zz

w w
   , provided 0w   

(To divide one complex number by another complex number, divide the modulus of the first by 

the modulus of the second and subtract the second argument from the first argument.) 

The proof of Theorem 6.2 requires a mix of definitions, arithmetic, and identities. 

 We start with the product rule. 

   
   
       

cis cis

cis cis

cos s sn   defic nition ci os sin  of i

z w z w

z w

z w i i

 

 

   

       


         

 

We now focus on the quantities in brackets on the right side of the equation. 

       
               
               
               
 

2

2

2

cos sin cos sin

cos cos cos sin sin cos sin sin

cos cos sin sin sin cos cos sin

cos cos sin sin s

  rearrange 

i

terms

    1; oin co rs co ts s ai f cto  u

o

 n

c s s

i i

i i i

i i i

i i

i

i

   

       

       

       

 

        
   

   

      
  

 

 
 

                                                                       sum identities

     

n

cis

 

 



 

 

Putting this result together with our earlier work, we have  cisz w z w    . 



6.4 Complex Products, Powers, Quotients, and Roots T6-61 
 

 To prove the quotient rule, assuming 0w  , 

 
 
   
   

cis

cis

cos sin

cos sin

zz

w w

z i

w i




 
 




 



 

Multiplying by 
   
   

cos sin

cos sin

i

i

 
 




, 

   
   

   
   

       
       
               

           
     

2

2 2 2

cos sin cos sin

cos sin cos sin

cos sin cos sin

cos sin cos sin

cos cos cos sin sin cos sin sin

cos cos sin sin cos sin

cos cos sin

z i iz

w w i i

i iz

w i i

z i i i

w i i i

z

w

   
   

   
   

       
     

  

 
  

 

         
        

  
 

  


 

         
   

   

2 2 2

sin sin cos cos sin

cos sin

cos sin

1

i

i

z i

w

    
 

   

        


  
 

 

Finally, we have  cis
zz

w w
   . 

Example 6.4.1. Let 2 3 2z i   and 1 3w i   .  Use Theorem 6.2 to find the following, with 

the final answer expressed in rectangular form. 

 1. z w  2. 
z

w
 

Solution. In order to use Theorem 6.2, we first write z  and w  in polar form. 

For 2 3 2z i  , 

   
2 2

2 3 2

16

4

z  




 

 To determine the argument  , 
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Im
tan

Re

2

2 3

1 3
  or  

33

z

z
 





 

 Noting that z  lies in Quadrant I, we find 
6

  .8  Hence, 4cis
6

z
   
 

. 

For 1 3w i   , 

   22
1 3

2

w   


 

 The argument   has 

  3
tan

1

3

 


 

 

 Since w  lies in Quadrant II, it follows that 
2

3

  .  So, 
2

2cis
3

w
   

 
. 

We can now proceed with the solution. 

1. To determine z w , we use the product rule. 

2
4cis 2cis

6 3

2
8cis

6 3

5
8cis

6

5 5
8 cos sin

6 6

z w

i

 

 



 

                   
   
 
   
 

             

 

After converting to rectangular form and simplifying, 4 3 4z w i   . 

2. Using the quotient rule, 

 
8 Unless otherwise specified, we will select arguments between 0 (inclusive) and 2π. 
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4cis
6

2
2cis

3

4 2
cis

2 6 3

2cis
2

z

w





 



 
 
 
 
 
 
   
 
   
 

 

Since 
2


  is a quadrantal angle, we can ‘see’ the rectangular form by rotating 

2


 radians 

clockwise from the positive real axis, and then moving out 2 units along the negative imaginary 

axis.  We find that 2
z

i
w
  . 

  

Powers of Complex Numbers 

The following theorem requires that a complex number first be written in polar form. 

Theorem 6.3. Power Rule (DeMoivre’s Theorem): Suppose z  is a complex number with polar form 

 cisz z  .  Then  

 cis
nnz z n  for every natural number n  

(To raise a complex number to the power n , raise its modulus to the power n  and multiply its 

argument by n .) 

We prove Theorem 6.3 by induction.  Let  P n  denote the statement  cis
nnz z n . 

 Then  1P  is true since 

 
 

1

1

cis

cis 1

z z

z

z









 

 

 We now assume that  P k  is true; that is, we assume  cis
kkz z k  for some 1k  .  Our 

goal is to show that  1P k   is true, or that   11 cis 1
kkz z k    .  We have 
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1

1

                                    property of exponents

  induction hypothesis

          product rule

cis cis

cis

cis 1

k k

k

k

k

z z z

z k z

z z k

z k

 

 











 

 

 

Hence, assuming  P k  is true, then  1P k   is true so, by the Principle of Mathematical Induction9, 

 cis
nnz z n  for all natural numbers n . 

Example 6.4.2. Let 1 3w i   .  Use Theorem 6.3 to find 5w , with the final answer expressed in 

rectangular form. 

Solution. From Example 6.4.1, the polar form of w  is 
2

2cis
3

w
   

 
.  To find 5w , we use 

DeMoivre’s Theorem as follows. 

5

5

5

2
2cis

3

2
2 cis 5

3

10
32cis

3

w






       
   
 
   
 

 

Since 
10

3


 is coterminal with 

4

3


, we get 

 

5 4 4
32 cos sin

3 3

1 3
32

2 2

16 16 3

w i

i

i

              
  

         

  

 

  

Some remarks are in order. 

 The reader may not be sold on using the polar form of complex numbers to find their product, 

especially if the numbers are not given in polar form to begin with.  Indeed, a lot of work was 

needed to convert the numbers z  and w  in Example 6.4.1 into polar form, compute their 

 
9 The reader is encouraged to look up the Principle of Mathematical Induction. 
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product, and then convert the product back to rectangular form; certainly more work than is 

required to multiply out   2 3 2 1 3z w i i     as we did in Example 6.3.1. 

 In Example 6.4.1, we may (or may not) have saved time using Theorem 6.2 to find and simplify 

z

w
 as opposed to starting with 

2 3 2

1 3

i

i


 

, rationalizing the denominator, and simplifying.  (Try 

it!) 

 Theorem 6.3 pays huge dividends when computing large powers of complex numbers.  Consider 

how we computed 5w  in Example 6.4.2 and compare that to accomplishing the same feat by 

expanding   5

1 3 i  . 

 There is a geometric reason for studying these polar forms.  Take the product rule, for instance.  

If  cisz z   and  cisw w  , the formula  cisz w z w     can be viewed 

geometrically as a two-step process.  The multiplication of z  by w , 1w  , can be interpreted 

as magnifying z , the distance from 0 to z , by w .  Adding the argument of w  to the argument 

of z  can be geometrically interpreted as a rotation of   radians counter-clockwise about the 

pole. 

Focusing on 4cis
6

z
   
 

 and 
2

2cis
3

w
   

 
, we can arrive at the product z w  from Example 6.4.1 by 

plotting z , doubling its distance from 0, since 2w  , and rotating 
2

3


 radians counter-clockwise.  The 

following sequence of diagrams attempts to describe this process geometrically. 

Figure 6.4. 1 

 
Multiplying z  by 2w   

Figure 6.4. 2 

 

Rotating counter-clockwise by 
2

3

  , the argument of w  
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We may visualize division similarly.  For 1w  , the formula  cis
zz

w w
    can be interpreted as 

shrinking z , the distance from 0 to z , by the factor w , and rotating   radians.  In the case of 

4cis
6

z
   
 

 and 
2

2cis
3

w
   

 
 from Example 6.4.1, we arrive at 

z

w
 by halving the distance from 0 to 

z , and rotating clockwise 
2

3


 radians, as visualized below. 

Figure 6.4. 3 

 
 

Dividing z  by 2w   

Figure 6.4. 4 

 

Rotating clockwise by 
2

3

  , the argument of w  

  

Roots of Complex Numbers 

Our last goal of the section is to reverse DeMoivre’s Theorem to extract roots of complex numbers. 

Definition 6.5. Let n  be a positive integer.  An nth root of a complex number z  is a complex number 

w  such that nw z . 

Here, we do not specify one particular principal nth root, hence the use of the indefinite article in defining 

w  as ‘an’ nth root of z .  Using this definition, both 4 and 4  are square roots of 16, while 16  means 

the principal square root of 16, as in 16 4 . 

Suppose we wish to find the complex third roots of 8.  Algebraically, we are trying to solve  

3 8w  .  This is equivalent to solving 3 8 0w    which, after factoring, becomes 

  22 2 4 0w w w    .  Now, we need to solve 2 0w   and 2 2 4 0w w   .  One solution is 2w   

and the other two solutions, by the quadratic formula, are 
2 4 16

1 3
2

w i
  

    .  So, the complex 

third roots of 8 are 2 and 1 3 i  , for a total of three third roots of 8. 
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To solve the same problem using techniques developed in this section, we express 8z   in polar form.  

Noting that 8z   lies 8 units away from the origin on the positive real axis, we get  8cis 0z  .  If we let 

 cisw w   represent the polar form of w , the equation 3 8w   becomes 

     
   

3

3

3
m

8

cis 8cis 0

cis 3 8   DeMoivre’s Th ecis 0 eor

w

w

w











 

The complex number on the left side of the equation corresponds to the point with polar coordinates 

 3
, 3w   while the complex number on the right side corresponds to the point with polar coordinates 

 8,0 .  The two polar representations  3
, 3w   and  8,0  correspond to the same complex number, and 

we use this correspondence to determine three distinct points w  such that 3 8w  . 

 By definition, 0w  , so it follows that 
3

0w  .  Since w  is a real number, we solve 
3

8w   

by extracting the principal cube root to get 3 8 2w   . 

 Noting that the angle 0  is coterminal with any angle 0 2 k , where k  is an integer, we use 

3 0 2 k    to determine the angle   needed in the polar representation for each of the three 

distinct cube roots.  Then 
2

3

k   and setting k  equal to 0, 1, and 2, the resulting angles are 0 

radians, 
2

3


 radians, and 

4

3


 radians, respectively. 

The resulting polar coordinates for the three roots of 8 and their corresponding numbers ( 0w , 1w , and 2w ) 

in both complex and polar form are shown in the following table.  For extra practice, try deriving the 

rectangular forms on your own. 

Polar Coordinate  2,0  
2

2,
3

 
 
 

 
4

2,
3

 
 
 

 

Complex Number  0 2cis 0w   1

2
2cis

3
w

   
 

 2

4
2cis

3
w

   
 

 

Rectangular Form 0 2w   
1 1 3w i    2 1 3w i    

The cube roots of 8 can be visualized geometrically in the complex plane, as follows. 
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Figure 6.4. 5 

 

Keeping the geometric picture in mind throughout the remainder of this section will lead to an interesting 

observation regarding geometric properties of complex numbers. 

While the process for finding cube roots of 8 seems more involved than our previous factoring approach, 

this procedure can be generalized to find, for example, all of the fifth roots of 32.  (Try using factoring 

techniques on that!)  If we start with a generic complex number in polar form,  cisz z  , and solve 

nw z  in the same manner as above, we arrive at the following theorem. 

Theorem 6.4. The nth Roots of a Complex Number: Let 0z   be a complex number with polar form 

 cisz z  .  For each natural number n , z  has n  distinct nth roots, which we denote 0w , 1w , ,

1nw  , and they are given by the formula 

 
1 2

cisn
kw z k

n n

    
 

 

The proof of Theorem 6.4 breaks into two parts: first, showing that each kw  is an nth root; second, 

showing that the set   | 0,1, , 1kw k n   consists of n  different complex numbers. 

 To show kw  is an nth root of z , we use DeMoivre’s Theorem to show   n

kw z . 

 

 

 
 

  DeMoivre’s

2
cis

2
cis

cis 2

 Theorem

n
n

n
k

n
n

w z k
n n

z n k
n n

z k
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Since k  is an integer,    cos 2 cosk     and    sin 2 sink    .  It follows that 

   cis 2 cisk    , so    cis
n

kw z z  , as required. 

 To show that the formula in Theorem 6.4 generates n  distinct numbers, we assume 2n   (or 

else there is nothing to prove) and note that the modulus of each kw  is the same, namely n z .  

Therefore, the only way any two of these polar forms correspond to the same number is if their 

arguments are coterminal; that is, if the arguments differ by an integer multiple of 2 . 

Suppose k  and j  are integers between 0 and  1n  , inclusive, with k j .  Then 

2 2
2

k j
k j

n n n n n

                  
     

.  For this to be an integer multiple of 2 ,  k j  must 

be a multiple of n .  But because of the restrictions on k  and j , 0 1k j n    .  (Think this 

through.)  Hence,  k j  is a positive number less than n , so it cannot be a multiple of n .  As a 

result, kw  and jw  are different complex numbers, and we are done. 

From College Algebra, we know there are at most n  distinct solutions to nw z , and we have just found 

all of them.  We illustrate Theorem 6.4 in the following examples. 

Example 6.4.3. Find the two square roots of 2 2 3z i   .  Express your answers in rectangular 

form. 

Solution. To find both square roots of 2 2 3z i   , we start by writing z  in its polar form, 

2
4cis

3
z

   
 

.  We identify 4z  , 
2

3

  , and 2n  .  We are looking for two roots, and in keeping 

with the notation in Theorem 6.4, we will call them 0w  and 1w .  We get 

 

0   Theorem 6.4 with 0

rectangular form

2 3 2
4 cis 0

2 2

2cis
3

1 3

w k

i

 



    
 

   
 







 

and 
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1   Theorem 6.4 with 1

rectangular form

2 3 2
4 cis 1

2 2

4
2cis

3

1 3

w k

i

 



    
 

   






 

 

We can check each of these roots by squaring to get 2 2 3z i   . 

  

Example 6.4.4. Find the four fourth roots of 16z   .  Express your answers in rectangular form. 

Solution. To find the fourth roots of 16z   , proceeding as above, we write z  in its polar form as 

 16cisz  .  With 16z  ,   , and 4n  , we get the four fourth roots: 

 

4
0

4
1

4
2

4
3

2
16 cis 0 2cis

4 4 4

2 3
16 cis 1 2cis

4 4 4

2 5
16 cis 2 2cis

4 4 4

2 7
16 cis 3 2cis

4 4 4

w

w

w

w

  

  

  

  

         
   
         
   
         
   
         
   

 

Converting these to rectangular form gives 0 2 2w i  , 1 2 2w i   , 2 2 2w i   , and 

3 2 2w i  . 

  

Example 6.4.5. Find the three cube roots of 2 2z i  . 

Solution. For finding the cube roots of 2 2z i  , we have 2cis
4

z
   
 

.  With 2z  , 
4

  , 

and 3n  , our computations yield 

 

3
0

3 3
1

3
2

2 cis
12

9 3
2 cis 2 cis

12 4

17
2 cis

12

w

w

w
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If we were to convert these to rectangular form, we would need to use either sum and difference identities 

or half-angle identities to evaluate 0w  and 2w .  Since we are not explicitly told to do so, we leave this as a 

good, but messy, exercise. 

  

Example 6.4.6. Find the five fifth roots of 1z  . 

Solution. To find the five fifth roots of 1, we write z  in the polar form  1cis 0z  .  Then 1z  , 

0  , and 5n  .  Since 5 1 1 , the roots are 

 

 0

1

2

3

4

cis 0 1

2
cis

5

4
cis

5

6
cis

5

8
cis

5

w

w

w

w

w









 

   
 
   
 
   
 
   
 

 

The situation here is even graver than in the previous example, since we have not developed any identities 

to help us determine the cosine or sine of 
2

5


.  At this stage, we could approximate our answers using a 

calculator, and we leave this as an exercise. 
  

Now that we have done some computations using Theorem 6.4, we take a step back to look at things 

geometrically.  Essentially, Theorem 6.4 says that to find the nth roots of a complex number, we take the 

nth root of the modulus and divide the argument by n .  This gives the first root 0w .  Each successive root 

is found by adding 
2

n


 to the argument, which amounts to rotating 0w  by 

2

n


 radians.  This results in n  

roots, spaced equally around the complex plane.  As an example of this, the answers to Example 6.4.4 are 

plotted below. 
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Figure 6.4. 6 

 

The four fourth roots of 16z    equally spaced 
2

4 2

 
  radians around the plane 

We have only glimpsed at the beauty of the complex numbers in this section.  The complex plane is 

without a doubt one of the most important mathematical constructs ever devised.  Coupled with Calculus, 

it is the venue for incredibly important science and engineering applications. 
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6.4 Exercises 

In Exercises 1 – 12, use  
3 3 3

2 2
z i    and  3 2 3 2w i   to compute the quantity.  Express your 

answers in polar form using the argument  , with 0 2   .  These exercises should be worked without 

the aid of a calculator. 

 1. zw   2. 
z

w
 3. 

w

z
 4. 4z  

 5. 3w  6. 5 2z w  7. 3 2z w  8. 
2z

w
 

 9. 
2

w

z
 10. 

3

2

z

w
 11. 

2

3

w

z
 12. 

6
w

z
 
 
 

 

In Exercises 13 – 24, use the power rule (DeMoivre’s Theorem) to find the indicated power of the given 

complex number.  Express your final answers in rectangular form.  These exercises should be worked 

without the aid of a calculator. 

 13.  3

2 2 3 i   14.  3

3 i   15.  4
 3 3 i   16.  4

3 i  

 17. 
3

 
5 5

2 2
i  

 
 18. 

6

 
1 3

2 2
i

 
   
 

 19. 
3

 
3 3

2 2
i  

 
 20. 

4

 
3 1

3 3
i

 
  

 
 

 21. 

4

 
2 2

2 2
i

 
  

 
 22.  5

 2 2 i  23.  5

3 i  24.  8
1 i  

In Exercises 25 – 36, find the indicated complex roots.  Express your answers in polar form and then 

convert them into rectangular form.  These exercises should be worked without the aid of a calculator. 

 25. The two square roots of  4z i  26.  The two square roots of  25z i   

 27. The two square roots of 1 3z i   28. The two square roots of 
5 5 3

2 2
i  

 29. The three cube (third) roots of 64z   30.  The three cube roots of 125z    

 31. The three cube roots of z i  32. The three cube roots of  8z i   

 33. The four fourth roots of 16z   34. The four fourth roots of 81z    

 35. The six sixth roots of 64z   36. The six sixth roots of 729z    
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37. Find the four complex fourth roots of −4.  Use them to factor   4 4p x x  .  Multiply appropriate 

factors to show that     2 22 2 2 2p x x x x x      is the factorization of p  over the real numbers. 

38. Use the 12 complex 12th roots of 4096 to factor   12 4096p x x   over the real numbers.  The result 

will be a product of linear and irreducible quadratic factors. 

39. Given any natural number 2n  , the complex nth roots of the number 1z   are called the nth Roots of 

Unity.  In the following exercises, assume that n  is a fixed, but arbitrary, natural number such that 

2n  . 

a) Show that 1w   is an nth root of unity. 

b) Show that if both jw  and kw  are nth roots of unity then so is their product j kw w . 

c) Show that if jw  is an nth root of unity then there exists another nth root of unity 'jw  such that 

' 1j jw w  .  Hint: If  cisjw   let  ' cis 2jw    .  You’ll need to verify that 

 ' cis 2jw     is indeed an nth root of unity. 

40. Another way to express the polar form of a complex number is to use the exponential function.  For 

real numbers t , Euler’s Formula defines      cos sini te t i t  . 

a) Use the definition      cos sini te t i t   to show that        i x yi x i ye e e   for all real numbers x  and 

y . 

b) Use the definition      cos sini te t i t   to show that         n i n xi xe e  for any real number x  and 

any natural number n . 

c) Use the definition      cos sini te t i t   to show that  
 

 

 

 
 

 

i x
i x y

i y

e
e

e
  for all real numbers x  and y . 

d) If   cisz r   is the polar form of z , show that   i tz re  where t   radians. 

e) Show that   1 0ie    .  (This famous equation relates the five most important constants in all of 

Mathematics with the three most fundamental operations in Mathematics.) 

f) Show that  
   

cos
2

i t i te e
t


  and that  

   

sin
2 

i t i te e
t

i


  for all real numbers t . 
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CHAPTER 7 
VECTORS 

 
Figure 7.0. 1 

 
Figure 7.0. 2 

Chapter Outline 

7.1. Vector Properties and Operations  

7.2. The Unit Vector and Vector Applications 

7.3. The Dot Product 

Introduction 

As we have seen numerous times in this book, Trigonometry is used to model and solve real-

world problems.  In some cases, the solution to a real-world problem is just a number or the size 

or magnitude of a quantity.  However, there are instances when both magnitude and direction are 

required to describe the answer.  To describe such quantities we use vectors.  For example, to 

describe vectors 1T  and 2T  above, we need both their sizes and their directions.  

In this chapter, we introduce vectors and many of their applications.  We begin in Section 7.1 

with the geometric representation of vectors along with vector arithmetic, properties, and 

applications involving bearings.  Section 7.2 continues with applications by focusing on 

component forms of vectors.  The unit vector is introduced, which allows alternate 

representations of vectors.  Also in this section, vectors are used to model forces.  The focus of 

Section 7.3 is the dot product, its properties, and its applications. 
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7.1 Vector Properties and Operations  

Learning Objectives 

 Interpret vectors geometrically. 

 Write vectors in component form. 

 Perform vector addition, subtraction, and scalar multiplication. 

 Determine the magnitude and direction of vectors. 

In using Trigonometry to model and solve real-world problems, the solution may only require a 

magnitude.  For example, when asked how close the nearest Sasquatch nest is, the answer might be three 

miles.  There are other instances, however, when more information is required.  For example, it may be 

important to know how close the nearest Sasquatch nest is as well as the direction in which it lies.  To 

answer questions like these, which involve both a magnitude and a direction, we use vectors.1  

The Geometry of Vectors 

A vector is represented geometrically as a directed line segment where the magnitude of the vector is 

taken to be the length of the line segment and the direction is made clear with the use of an arrowhead at 

one endpoint of the segment.  A vector has an initial point, where it begins, and a terminal point, 

indicated by an arrowhead, where it ends.  There are various symbols that distinguish vectors from other 

quantities: 

 Lower case type, boldfaced or with an arrow on top, such as v  or v


.2 

 Given an initial point P  and a terminal point Q , a vector can be represented as PQ


.  The arrow 

on top indicates its direction.  This is different from PQ , which represents the line segment 

between P  and Q . 

The following diagram shows a typical vector v .  The point  1,2P  is the initial point of v  and the point 

 4,6Q  is the terminal point of v .  Since v  is a vector from the point P  to the point Q , we write 

PQv


, where the order of points P  (the initial point) and Q  (the terminal point) is important.  (Think 

about this before moving on.) 

 
1 The word ‘vector’ comes from the Latin ‘vehere’, meaning to convey or carry. 
2 In this textbook, we will usually adopt the boldfaced type notation for vectors, without the arrow.  In the 
classroom, your instructor will likely use arrow notation, and arrow notation should be used whenever vectors are 
written by hand. 
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Figure 7.1. 1 

 

PQv


 

While it is true that P  and Q  completely determine v , it is important to note that since vectors are 

defined in terms of their two characteristics, magnitude and direction, any directed line segment with the 

same length and direction as v  is considered to be the same vector as v , regardless of its initial point.  In 

the case of our vector v  above, any vector that moves three units to the right and four units up from its 

initial point to arrive at its terminal point is considered the same vector as v .  For example, the vector 

from the initial point  ' 2,3P   to the terminal point  ' 1,7Q  is the same vector v , as shown below. 

Figure 7.1. 2 

 

The Component Form of a Vector 

The notation we use to capture that the vector v  moves three units to the right and four units up is 

3,4v .  This is called the component form of the vector v , where the first number, 3, is the 

horizontal component (or the x-component) of v  and the second number, 4, is the vertical component 

(or the y-component) of v .  If we wanted to reconstruct 3,4v  with initial point  ' 2,3P   then we 
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would find the terminal point of v  by adding 3 to the x-coordinate and adding 4 to the y-coordinate to 

obtain the terminal point  ' 1,7Q , as demonstrated in the previous figure.  The component form of a 

vector ties these geometric objects back to algebra, and ultimately trigonometry.  A definition follows. 

Definition 7.1. Suppose a vector v  is represented by the directed line segment with an initial point 

 0 0,P x y  and a terminal point  1 1,Q x y .  Then the component form of v  is  

1 0 1 0,PQ x x y y   v


. 

Example 7.1.1. Consider the vector whose initial point is  2,3P  and whose terminal point is 

 6,4Q .  Write PQv


 in component form. 

Solution. Using the definition of component form, we get 

 
6 2,4 3

4,1

  



v
 

  

Using the language of components, two vectors are equal if and only if their corresponding components 

are equal.  That is, 1 2 3 4, ,v v v v  if and only if 1 3v v  and 2 4v v .  (Think about this before reading 

on.)  We now define operations on vectors. 

Vector Addition 

Suppose we are given two vectors v  and w .  The sum, or resultant vector, v w  is obtained 

geometrically as follows.  First, plot v .  Next, plot w  so that its initial point is the terminal point of v .  

To plot the vector v w , we begin at the initial point of v  and end at the terminal point of w .  It is 

helpful to think of the vector v w  as the ‘net result’ of moving along v  and then moving along w . 

Figure 7.1. 3 

 

v , w , and v w  
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Our next example demonstrates the use of resultant vectors to solve real-world problems, while reviewing 

bearings and the laws of sines and cosines. 

Example 7.1.2. A plane leaves the local airport with an airspeed of 175 miles per hour at a bearing of 

N40°E.  A 35 mile per hour wind is blowing at a bearing of S60°E.  Find the true speed of the plane, 

rounded to the nearest mile per hour, and the true bearing of the plane, rounded to the nearest degree. 

Solution. For both the plane and the wind, we are given their speeds and directions.  Coupling speed 

(as a magnitude) with direction is the concept of velocity, which we have seen a few times before in this 

textbook.  We let p  denote the plane’s velocity and w  denote the wind’s velocity in the diagrams below.  

The true speed and bearing are found by analyzing the resultant vector, p w , which we refer to as r . 

Figure 7.1. 4 

 

Vectors p  and w  

Figure 7.1. 5 

 

Vector  r p w  

Figure 7.1. 6 

 

Magnitudes of vectors 

From the vector diagrams, we get a triangle, the lengths of whose sides are the magnitude of p , which is 

175 mph, the magnitude of w , which is 35 mph, and the magnitude of the resultant vector  r p w , 

which we refer to as r .  From the given bearing information, we use geometric properties of angles to 

determine that the angle between the sides of lengths 175 and 35 measures 100°.  The Law of Cosines can 

then be used to determine r . 

 
    

 

2 2 2175 35 2 175 35 cos 100

31850 12250cos 100 184.33

r

r

  

  




 

The true speed of the plane is approximately 184 miles per hour.   

To find the true bearing of the plane, we use the Law of Sines to determine the angle  .3 

 
3 Since the angle 100° is obtuse, the Law of Sines can be used without any ambiguity here. 
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sin 100sin

35

sin 35sin 100

35sin 100
sin

r

r

r



















 

Using the inverse sine, along with the value of r  from our prior calculation, we find 10.78   .  Given 

the geometry of the situation, we add   to the given 40° to find that the true bearing of the plane is 

approximately N51°E. 

  

We next define the addition of vectors component-wise to match the geometry.4 

Definition 7.2. Vector Addition: Suppose 1 2,v vv  and 1 2,w ww .  Then  

 1 1 2 2,v w v w   v w  

Example 7.1.3. Let 3,4v  and PQw


, for points  3,7P   and  2,5Q  .  Find v w  and 

interpret this sum geometrically.  

Solution. We begin by writing w  in component form. 

 

   
 

  for 3,7  and

2

3

 2,5

2 ,5 7

1,

P QPQ

    

 

 w


 

Using the definition,  3,4 1, 2 3 1,4 2       v w , from which 4,2 v w . 

To visualize this sum, we draw v  with its initial point at  0,0 , for 

convenience, so that its terminal point is  3,4 .  Next, we graph w  

with its initial point at  3,4 .  Moving one unit to the right and two 

units down, we find the terminal point of w  to be  4,2 .  Then, the 

vector v w  has initial point  0,0  and terminal point  4,2 , so its 

component form is 4,2 , as required. 

Figure 7.1. 7 

 

  

 
4 Adding vectors component-wise should look familiar.  Compare this with matrix addition.  In fact, in more 

advanced courses such as Linear Algebra, vectors are defined as ‘1 by n’ or ‘n by 1’ matrices, depending on the 
situation. 
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In order for vector addition to have properties similar to real number addition, it is necessary to extend the 

definition of vectors to include a zero vector, 0,00 .  Geometrically, 0  represents a point, which can 

be thought of as a directed line segment having the same initial and terminal points.  While it seems clear 

that the magnitude of 0  should be 0, it is not clear what the direction is.  The direction of 0  is, in fact, 

undefined.  We have the following theorem. 

Theorem 7.1. Properties of Vector Addition. 

 Commutative Property: For all vectors v  and w ,   v w w v . 

 Associative Property: For all vectors u , v , and w ,        u v w u v w . 

 Identity Property: The vector 0  acts as the additive identity for vectors.  That is, for all 

vectors v ,    v 0 0 v v . 

 Inverse Property: Every vector v  has a unique additive inverse, denoted v .  That is, for 

every vector v , there is a vector v  so that         v v v v 0 . 

The properties in Theorem 7.1 are easily verified using the definition of vector addition.  For the 

commutative property, we note that if 1 2,v vv  and 1 2,w ww , then 

 

1 2 1 2

1 1 2 2

1 1 2 2

1 2 1 2

   definition of vector addition

   commutative property of real number addition

  definition of vecto

,

r addition

, ,

,

, ,

v v w w

v w v w

w v w v

w w v v

  

  

  

 

 

v w

w v

 

Geometrically, we can ‘see’ the commutative property by realizing that the sums v w  and w v  are 

the same directed diagonal determined by the parallelogram. 

Figure 7.1. 8 
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The proofs of the associative and identity properties proceed similarly, and the reader is encouraged to 

verify these properties, and provide accompanying diagrams. 

The Additive Inverse 

The existence and uniqueness of the additive inverse of a vector is yet another property inherited from the 

real numbers.  Given a vector 1 2,v vv , suppose we wish to find a vector 1 2,w ww  so that 

 v w 0 .  By the definition of vector addition, we have 

 
1 1 2 2, 0,0v w v w

 

  

v w 0
 

Hence, 1 1 0v w   and 2 2 0v w  , from which 1 1w v   and 2 2w v  , resulting in 1 2,v v  w .  So 

v  has an additive inverse; it is unique and can be obtained by the formula 1 2,v v   v .   

Geometrically, the vectors 1 2,v vv  and 1 2,v v   v  have 

the same length but opposite directions.  As a result, when 

adding the vectors geometrically, the sum   v v  starts at the 

initial point of v  and ends back at the initial point of v .  Or, in 

other words, the net result of moving along v  and then along 

v  is returning to the original position.5 

 

Figure 7.1. 9 

 

Using the additive inverse of a vector, we can define vector subtraction, or the difference of two vectors, 

as     v w v w .  If 1 2,v vv  and 1 2,w ww , then 

 

 

   
1 2 1 2

1 1 2 2

1 1 2 2

, ,

,

,

v v w w

v w v w

v w v w

   

   

    

  

v w v w

 

In other words, like vector addition, vector subtraction is performed component-wise.  To interpret the 

vector v w  geometrically, we note 

 
5 An interesting property of a vector and its additive inverse is that the two vectors are ‘parallel’.  In fact, we say two 
non-zero vectors are parallel when they have the same or opposite directions.  That is, v  is parallel to w  if 

kv w  for some non-zero scalar k.  (Scalar multiplication will be defined shortly.) 
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  definition of vector subtraction

  commutativity of vector addition

  associativity of vector addition

                  definition of additive inverse

                  

     

   

   

 


w v w w v w

w w v

w w v

0 v

v       definition of additive identity

 

This means that the net result of moving along w , then moving along v w , is just v  itself.  From the 

diagram below, to the left, we see that v w  may be interpreted as the vector whose initial point is the 

terminal point of w  and whose terminal point is the terminal point of v .  It is also worth mentioning that 

in the parallelogram, to the right, determined by the vectors v  and w , the vector v w  is one of the 

diagonals, the other being v w .6 

Figure 7.1. 10 

 

Figure 7.1. 11 

 

Scalar Multiplication 

For vectors, scalar multiplication is the process of multiplying a vector by a real number.  We define 

scalar multiplication of vectors in the same way we defined it for matrices. 

Definition 7.3. Scalar Multiplication: If k  is a real number and 1 2,v vv , then 

 1 2 1 2, ,k k v v k v k v v  

 
6 See Figure 7.1.8. 
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Multiplication of vectors by a scalar k  can be understood 

geometrically as scaling the vector (if 0k  ) or scaling 

the vector and reversing its direction (if 0k  ) as 

demonstrated to the right. 

 

Figure 7.1. 12 

 

Note that, by definition, 

 

   
   

1 2

1 2

1 2

1 1 ,

1 , 1

,

v v

v v

v v

  

  

  

 

v

v

 

This and other properties of scalar multiplication are summarized below. 

Theorem 7.2. Properties of Scalar Multiplication. 

 Associative Property: For every vector v  and scalars k  and r ,    k r k rv v . 

 Identity Property: For every vector v , 1 v v .  

 Additive Inverse Property: For every vector v ,  1  v v . 

 Distributive Property over Scalar Addition: For every vector v  and scalars k  and r , 

 k r k r  v v v . 

 Distributive Property over Vector Addition: For all vectors v  and w  and for any scalar k , 

 k k k  v w v w . 

 Zero Product Property: If v  is a vector and k  is a scalar, then k v 0  if and only if 0k   

or v 0 . 

The proof of Theorem 7.2 ultimately relies on the definition of scalar multiplication and the properties of 

real numbers.  For example, to prove the associative property, we let 1 2,v vv .  If k  and r are scalars, 

then 
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1 2

1 2

1 2

1 2

1 2

  definition of scalar multiplication

  associative property of real number multiplication

           definition of scalar multiplication

          definit

,

,

,

,

,

k r k r v v

k r v k r v

k r v k r v

k r v r v

k r v v











v

 
ion of scalar multiplication

  k r v

 

The remaining properties are proved similarly and are left as exercises.  The next example demonstrates 

how Theorem 7.2 allows us to do the same kind of algebraic manipulations with vectors as we do with 

variables. 

Example 7.1.4. Solve  5 2 1, 2   v v 0  for v . 

Solution.  

 

 
  

   
 

i

5

                distributive property over vector addition

                distributive property over scalar addition

     

2 1, 2

5 2 1, 2

5 2 2 1, 2

3 2 1, 2

3  2           defin, it4

   

    

     

   

  

v v 0

v v 0

v v 0

v 0

v 0 on of scalar multiplication

  definition of vector addition

        property of additive identity

     associative property, scalar

3 2,4 2, 4 2, 4

3 0,0 2, 4

3 2, 4

1 1
3 2, 4

3 3

2 4
1 ,

3 3

      

   

 

       
   

  

v 0

v 0

v

v

v  multiplication

     property of multiplicative identity
2 4

,
3 3

 v  

  

Vectors in Standard Position 

A vector whose initial point is  0,0  when plotted on the Cartesian coordinate system is said to be in 

standard position. 
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Definition 7.4. Let v  be a vector in standard position.  Let   be an angle this vector makes with the 

positive side of the x-axis. 

 The magnitude of v , denoted v , is the length of the vector v . 

 For v 0 ,   is a direction angle of v . 

Note the following: 

1. 0v  

2. The direction angle measure is not unique. 

3. The direction angle is not defined if v 0 .  

If 1 2,v vv  is plotted in standard position, then its terminal point is  1 2,v v , as shown below. 

Figure 7.1. 13 

 

1 2,v vv  in standard position 

Figure 7.1. 14 

 

Let r  v  and let   be a direction angle of v .  Then  ,r   are polar coordinates of the point having 

rectangular coordinates  1 2,v v .  By the Pythagorean Theorem, 2 2
1 2r v v  .  Using right triangle 

trigonometry, we also find that 

 
   
   

1

2

cos cos

sin sin

v r

v r

 

 

 

 

v

v
 

From the definition of scalar multiplication and vector equality, we get 

    
   

1 2,

cos , sin

cos ,sin

v v

 

 







v

v v

v

 

These results are stated in the following theorem, along with properties of magnitude. 
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Theorem 7.3. Properties of Magnitude and Direction: Suppose 1 2,v vv  is a vector.  Let  ,r   

be polar coordinates of the point  1 2,v v  with 0r  .  Then 

 2 2
1 2r v v  v  

    cos ,sin v v  

 0v , and 0v  if and only if v 0 . 

 For all scalars k , k k v v . 

Although the angle   in the polar point  ,r   is not unique, for 0,0v , we have 0r   and so all such 

angles are coterminal and the result    cos ,sin v v  holds.  Additionally, the result holds if 

0,0v  since in this case 0v . 

The proof of the third property in Theorem 7.3 is a direct consequence of 2 2
1 2v v v , which is by 

definition greater than or equal to zero.  Moreover, 2 2
1 2 0v v   if and only if 2 2

1 2 0v v  .  Hence, 

0v  if and only if 0,0 v 0 , as required.   

For the fourth property, if 1 2,v vv  and k  is a scalar, then 

 

   

 

1 2

1 2

2 2

1 2

2 2 2 2
1 2

2 2 2
1 2

2 2 2
1 2

2 2
1 2

2

           definition of scalar multiplication

  definition of magnitude

       product rule for radicals

          since 

     

,

,

k k v v

k v k v

k v k v

k v k v

k v v

k v v

v

k

kk v k











 

 

 

 

 

v

v               definition of magnitude

 

The equation    cos ,sin v v  in Theorem 7.3 says that any given vector is the product of its 

magnitude and direction, an important concept to keep in mind when studying and using vectors. 
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Example 7.1.5. Find the component form of the vector v  with 5v  so that when v  is plotted in 

standard position it lies in Quadrant II and makes a 60° angle7 with the negative x-axis. 

Solution. We are told that 5v  and are given information about its direction, so we can use the 

formula    cos ,sin v v  to get the component form of v .  To determine  , since v  lies in 

Quadrant II and makes a 60° angle with the negative x-axis, a polar form of the terminal point of v  is 

 5, 120  when v  is plotted in standard position.  (See the diagram below.) 

Figure 7.1. 15 

 

Thus, 

 

   cos 120 ,sin 120

1 3
5 ,

2 2

5 5 3
,

2 2



 

 

v v  

 

   

Example 7.1.6. For 3, 3 3 v , find v  and  , 0 2   , so that    cos ,sin v v . 

Solution. For 3, 3 3 v , we get    22
3 3 3 6   v . 

 
7 Due to the utility of vectors in real-world applications, we will usually use degree measure for the angle when 
giving the vector's direction. 
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We can find the   we are looking for by converting the 

point with rectangular coordinates  3, 3 3  to polar form 

 ,r  , where 0r  v .  From Section 6.1, we have 

 

 tan

3 3

3

3

y

x
 




 

 

Figure 7.1. 16 

 

Since  3, 3 3  is a point in Quadrant IV,   is a Quadrant IV angle; we find 
5

3

  . 

We may check our answer by verifying that 
5 5

3, 3 3 6 cos ,sin
3 3

          
   

v . 

  

Example 7.1.7. For the vectors 3, 4v  and 1, 2 w , find the following: 

 1. 2v w  2. 2v w  

Solution. 

1. For 3, 4v , we have 2 23 4 5  v .  The magnitude of 1, 2 w  is 

 221 2 5   w .  So, 2 5 2 2  v w .  

2. In the expression 2v w , notice that the arithmetic on the vectors comes first, then the 

magnitude.  Hence, our first step is to find the component form of the vector 2v w . 

 

2 3, 4 2 1, 2

3, 4 2, 4

1, 8

   

  



v w

 

Then, 

 2 2

2 1, 8

1 8

65

 

 



v w
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7.1 Exercises 

In Exercises 1 – 3, sketch v , 3v , and 
1

2
v . 

 1. 2, 1 v  2. 1,4 v  3. 3, 2  v  

In Exercises 4 – 6, sketch u v , u v , v u , and 2u . 

 4.  5. 6. 

Figure Ex7.1 1 

 

Figure Ex7.1 2 

 

Figure Ex7.1 3 

 

In Exercises 7 – 12, use the given pair of vectors to compute u v , u v , and 2 3u v . 

 7. 2, 3 u , 1,5v  8. 3,4 u , 2,1 v  

 9. 3,1 u , 2 3,2v  10. 
3 4

,
5 5

u , 
4 3

,
5 5

 v  

 11. 
2 2

,
2 2

 u , 
2 2

,
2 2

 v  12. 
1 3

,
2 2

u , 1, 3 v  

In Exercises 13 – 16, use the given pair of vectors to find v w , v w , and v w . 

 13. 12, 5 v , 3,4w  14. 7,24 v , 5, 12  w  

 15. 2, 1 v , 2,4 w  16. 10,4v , 2,5 w  
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In Exercises 17– 20, verify that the vectors satisfy the Parallelogram Law: 

  2 2 2 21

2
    v w v w v w  

 17. 12, 5 v , 3,4w  18. 7,24 v , 5, 12  w  

 19. 2, 1 v , 2,4 w   20. 10,4v , 2,5 w  

21. Write the vector with initial point  5,2  and terminal point  1, 3   in component form ,a b . 

22. Write the vector with initial point  4,2  and terminal point  3, 3  in component form ,a b . 

23. Write the vector with initial point  7, 1  and terminal point  1, 7   in component form ,a b . 

In Exercises 24 – 38, find the component form of the vector v  using the information given about its 

magnitude and direction.  Give exact values. 

 24. 6v ; when drawn in standard position, v  lies in Quadrant I and makes a 60° angle with the 

positive x-axis. 

 25. 3v ; when drawn in standard position, v  lies in Quadrant I and makes a 45° angle with the 

positive x-axis. 

 26. 
2

3
v ; when drawn in standard position, v  lies in Quadrant I and makes a 60° angle with the 

positive x-axis. 

 27. 12v ; when drawn in standard position, v  lies along the positive y-axis. 

 28. 4v ; when drawn in standard position, v  lies in Quadrant II and makes a 30° angle with the 

negative x-axis. 

 29. 2 3v ; when drawn in standard position, v  lies in Quadrant II and makes a 30° angle with the 

positive y-axis. 

 30. 
7

2
v ; when drawn in standard position, v  lies along the negative x-axis. 

 31. 5 6v ; when drawn in standard position, v  lies in Quadrant III and makes a 45° angle with the 

negative x-axis. 
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 32. 6.25v ; when drawn in standard position, v  lies along the negative y-axis. 

 33. 4 3v ; when drawn in standard position, v  lies in Quadrant IV and makes a 30° angle with the 

positive x-axis. 

 34. 5 2v ; when drawn in standard position, v  lies in Quadrant IV and makes a 45° angle with the 

negative y-axis. 

 35. 2 5v ; when drawn in standard position, v  lies in Quadrant I and makes an angle measuring 

1
arctan

2
 
 
 

 with the positive x-axis. 

 36. 10v ; when drawn in standard position, v  lies in Quadrant II and makes an angle measuring 

 arctan 3  with the negative x-axis. 

 37. 5v ; when drawn in standard position, v  lies in Quadrant III and makes an angle measuring 

4
arctan

3
 
 
 

 with the negative x-axis. 

 38. 26v ; when drawn in standard position, v  lies in Quadrant IV and makes an angle measuring 

5
arctan

12
 
 
 

 with the positive x-axis. 

In Exercises 39 – 44, find the component form of the vector v  using the information given about its 

magnitude and direction.  Round each value to two decimal places. 

 39. 392v ; when drawn in standard position, v  makes a 117° angle with the positive x-axis. 

 40. 63.92v ; when drawn in standard position, v  makes a 78.3° angle with the positive x-axis. 

 41. 5280v ; when drawn in standard position, v  makes a 12° angle with the positive x-axis. 

 42. 450v ; when drawn in standard position, v  makes a 210.75° angle with the positive x-axis. 

 43. 168.7v ; when drawn in standard position, v  makes a 252° angle with the positive x-axis. 

 44. 26v ; when drawn in standard position, v  makes a 304.5° angle with the positive x-axis. 
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In Exercises 45 – 62, find the magnitude and direction of each vector v .  Round your answers to two 

decimal places. 

 45. 1, 3v  46. 5,5v  47. 2 3,2 v  

 48. 2, 2 v  49. 
2 2

,
2 2

  v  50. 
1 3

,
2 2

  v  

 51. 6,0v  52. 2.5,0 v  53. 0, 7v  

 54. 3,4v  55. 12,5v  56. 4,3 v  

 57. 7,24 v  58. 2, 1  v  59. 2, 6  v  

 60. 123.4, 77.05 v  61. 965.15,831.6v  62. 114.1,42.3 v  

63. A small boat leaves the dock at Camp DuNuthin and heads across the Nessie River at 17 miles per 

hour, relative to the water, at a bearing of S68°W.  The river is flowing due east at 8 miles per hour.  

What is the boat’s true speed and bearing?  Round the speed to the nearest mile per hour and round 

the bearing to the nearest tenth of a degree. 

64. The HMS Sasquatch leaves port with bearing S20°E maintaining a speed of 42 miles per hour, 

relative to the water.  If the ocean current is 5 miles per hour with a bearing of N60°E, find the HMS 

Sasquatch’s true speed and bearing.  Round the speed to the nearest mile per hour and round the 

bearing to the nearest tenth of a degree. 

65. The goal of this exercise is to use vectors to describe non-vertical lines in the plane.  To that end, 

consider the line 2 4y x  .  Let 0, 4 0v  and let 1,2s .  Let t  be any real number.  Show 

that the vector defined by  t 0v v s , when drawn in standard position, has its terminal point on the 

line 2 4y x  .  (Hint: Show that ,2 4t t t  0  v v s  for any real number t .) 

Now consider the non-vertical line y mx b  .  Repeat the previous analysis with 0,b0v  and let 

1,ms .  Thus, any non-vertical line can be thought of as a collection of terminal points of the 

vector sum of 0,b  (the position vector of the y-intercept) and a scalar multiple of the slope vector 

1,ms . 

66. Prove the associative and identity properties of vector addition in Theorem 7.1. 

67. Prove the properties of scalar multiplication in Theorem 7.2. 
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7.2 The Unit Vector and Vector Applications  

Learning Objectives 

 Use vectors in component form to solve application problems. 

 Find the unit vector in a given direction. 

 Perform operations on vectors given in terms of principal unit vectors. 

 Use vectors to model forces. 

Using Vectors in Component Form to Solve Applications 

We continue our discussion of the component form of a vector from Section 7.1 and show how it can be 

used to solve application problems.  This next example revisits Example 7.1.2, making use of component 

forms and vector algebra to solve the problem. 

Example 7.2.1. A plane leaves the local airport with an airspeed of 175 miles per hour at a bearing of 

N40°E.  A 35 mile per hour wind is blowing at a bearing of S60°E.  Find the true speed of the plane, 

rounded to the nearest mile per hour, and the true bearing of the plane, rounded to the nearest degree. 

Solution. As in Example 7.1.2, we let p  denote the plane's velocity and w  denote the wind's velocity, 

and set about determining p w .  If we regard the airport as being at the origin, the positive y-axis acting 

as due north, and the positive x-axis acting as due east, we see that the vectors p  and w  are in standard 

position and their directions correspond to the angles 50° and 30  , respectively, for component forms: 

   
   

175 cos 50 ,sin 50

175cos 50 ,175sin 50





p  

 
 

   
   

35 cos 30 ,sin 30

35cos 30 ,35sin 30

  

  

w  

 
 

Figure 7.2. 1 
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Since we have no convenient way to express the exact values of sine and cosine of 50°, we leave both 

vectors in terms of sines and cosines.  Adding corresponding components, the resultant vector is 

        175cos 50 35cos 30 , 175sin 50 35sin 30     p w      

To find the ‘true’ speed of the plane, we compute the magnitude of the resultant vector: 

          2 2

175cos 50 35cos 30 175sin 50 35sin 30

184.33

      



p w    
 

Hence, the ‘true’ speed of the plane is approximately 184 miles per hour.  To find the true bearing, we 

need to find the angle   that corresponds to the polar form  ,r  , 0r  , of the point 

          
 

, 175cos 50 35cos 30 , 175sin 50 35sin 30

142.799,116.558

x y     



   

 

Since both of these coordinates are positive, we know   is a Quadrant I angle, as depicted below. 

Figure 7.2. 2 

 

Furthermore, 

 
     

   
175sin 50 35sin 30

tan
175cos 50 35cos 30

116.558

142.799

y

x


 
 

 



 

 
 

Using the arctangent function, we get 39.223   .  Since, for the purposes of bearing, we need the angle 

between p w  and the positive y-axis, we take the complement of   and find the ‘true’ bearing of the 

plane to be approximately N51°E. 
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The Unit Vector 

In addition to finding a vector's components, it is also useful in solving problems to find a vector in the 

same direction as a given vector, but having a magnitude of one.  We refer to a vector with a magnitude 

of one as a unit vector. 

Definition 7.5. A vector v  is a unit vector if 1v . 

For any nonzero vector v , we can obtain a unit vector in the same direction as v , as follows. 

The vector 
v

v
 is a unit vector in the direction of a vector v .  Since dividing a vector by a number is 

equivalent to multiplying by the reciprocal of that number, 
1   

 

v
v

v v
. 

The process of multiplying a nonzero vector by the reciprocal of its magnitude is called ‘normalizing the  

vector’.  Vectors v  and 
v

v
 have the same direction since 0v .  We leave it as an exercise to show 

that 
v

v
 is a unit vector for any nonzero vector v . 

The terminal points of unit vectors, when plotted in standard position, lie on the Unit Circle.  (Think 

about this before moving on.)  As a result, we visualize normalizing a nonzero vector in standard position 

as stretching or compressing the vector so that its terminal point is on the Unit Circle. 

Figure 7.2. 3 

 

Example 7.2.2. Find a unit vector in the same direction as 5, 12 v . 

Solution. We begin by finding the magnitude. 

    2 2
5 12 169 13    v  
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Next, we divide 5, 12 v  by 13v . 

1

1
5, 12

13
5 12

,
13 13

   
 

 

 

v
v

v v

 

We can check that 
5 12

,
13 13

 
v

v
 is indeed a  

unit vector by verifying that its magnitude is 1.   
 
Try it! 

Figure 7.2. 4 

 

  

Multiplying a unit vector in the direction of a nonzero vector by the magnitude of that vector gives us 

back the vector:  
v

v v
v

.  (Try this with the unit vector we found in Example 7.2.2.) 

The Principal Unit Vectors 

Of all the unit vectors, there are two that deserve special mention. 

Definition 7.6. The Principal Unit Vectors in the Plane: 

 The vector i  is defined by 1, 0i . 

 The vector j  is defined by 0, 1j . 

Figure 7.2. 5 

 

We can think of the vector i  as representing the positive x-direction while the vector j  represents the 

positive y-direction.  We have the following ‘decomposition’ theorem. 
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Theorem 7.4. Let v  be a vector with component form 1 2,v vv .  Then 1 2v v v i j . 

The proof of Theorem 7.4 is straightforward.  Since 1, 0i  and 0, 1j , we use the definitions of 

scalar multiplication and vector addition to get 

 

1 2 1 2

1 2

1 2

1, 0 0, 1

, 0 0,

 

  definitions of  and 

     scalar multiplication

                 vector addi n, tio

v v v v

v v

v v

  

 





i j

v

i j

 

Geometrically, the situation looks like this: 

Figure 7.2. 6 

 

In Section 7.1, we found the component form of a vector PQ


 with initial point  0 0,P x y  and terminal 

point  1 1,Q x y  to be 1 0 1 0,PQ x x y y  


.  It follows from Theorem 7.4 that PQ


 may also be written 

in terms of i  and j  as    1 0 1 0PQ x x y y   i j


.  An example follows. 

Example 7.2.3. Given a vector v  with initial point  2, 6P   and terminal point  6,6Q  , write the 

vector in terms of i  and j . 

Solution. 

 
    6 2 6 6

8 12

     

  

v i j

i j
 

   

Performing Operations on Vectors in Terms of i  and j 

When vectors are written in terms of i  and j , we carry out addition, subtraction, and scalar 

multiplication by performing operations on principal unit vectors. 
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Operations on Vectors Written in Terms of i  and j : For vectors 1 2v v v i j  and 1 2w w w i j , 

    1 1 2 2v w v w    v w i j  

    1 1 2 2v w v w    v w i j  

    1 2k k v k v v i j  for any scalar k  

These results can be verified using definitions of addition, subtraction, and scalar multiplication from 

Section 7.1 along with Theorem 7.4, and their verification is left to the student. 

Example 7.2.4. Use vectors 4 2 v i j  and 3  w i j  to find 3 v w . 

Solution. 

 

   
    
    

 
    

3 3 4 2 3

3 4 2 3

12 6 3

12 ( 3) 6

12 3 6 1

9 5

     

     

     

     

     

 

v w i j i j

i j i j

i j i j

i i j j

i j

i j

 

  

Using Vectors to Model Forces 

We conclude this section with a couple of examples that demonstrate how vectors are used to model 

forces.  A force is defined as a ‘push’ or a ‘pull’.  The intensity of the push or pull is the magnitude of the 

force, and is measured in newtons (N) in the SI system or pounds (lbs.) in the imperial system. 

Example 7.2.5. A barge loaded with merchandise is being towed by two tugboats, as shown below.  

Figure 7.2. 7 

 

Each tow line connecting the barge to one of the tugboats makes an angle of 28° with the path of the 

barge.  Find the tension (magnitude of the ‘pulling’ force) in the tow lines if the resultant force on the 

barge has a magnitude of 4,400 pounds. 
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Solution. Using vectors to solve this problem, we let 1F  represent the force exerted by Tug 1 and 2F  

represent the force exerted by Tug 2.  Then R  is the resultant force vector.   

Figure 7.2. 8 

 

Using vector addition, we have 1 2 F F R , shown in the following figure. 

Figure 7.2. 9 

 

The measure of the angle between vectors 1F  and 2F  is 180 28 28 124      .  We have been given the 

magnitude of the resultant vector, R , which is 4,400 pounds.  Our goal is to find the tensions in the tow 

lines, or the magnitudes of 1F  and 2F .  We can use the Law of Sines here. 

   

   
 

 

1

1

1

1

sin 28 sin 124

4400

sin 124 4400sin 28

4400sin 28

sin 124

2491.7









F

F

F

F

 

 





 

From properties of isosceles triangles, 2 2491.7F , so the tension in each tow line is approximately 

2491.7 pounds. 

   

The following example should be studied in great detail.  

Example 7.2.6. A 50-pound speaker is suspended from the ceiling by two support cables.  If one of 

the cables makes a 60° angle with the ceiling and the other makes a 30° angle with the ceiling, what are 

the tensions on each of the cables? 
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Solution. We first represent the problem schematically. 

Figure 7.2. 10 

 

There are three forces working on the speaker; the weight of the speaker, which we will call w , that pulls 

the speaker directly downward, and the forces on the cables, which we will call 1T  and 2T  (for 

‘tensions’) acting upward at angles 60° and 30°, respectively.  Following is a corresponding vector 

diagram. 

Figure 7.2. 11 

 

We are looking for the tensions on the cables, which are the magnitudes 1T  and 2T .  Since the 

speaker is stationary,8 we must have   1 2w T T 0 .  Viewing the common initial point of these vectors 

as the origin and the horizontal line through this point as the x-axis, we find component representations 

for the three vectors involved. 

 We can model the weight of the speaker as a vector pointing directly downward with a magnitude 

of 50 pounds.  That is, 50w .  Since the vector w  is directed strictly downward, 0, 1  j  

is a unit vector in the direction of w .  Hence, 

 
50 0, 1

0, 50

 

 

w
 

 For the force on the first cable, applying Theorem 7.3, we get 

 
8 This is the criteria for ‘static equilibrium’. 
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   cos 60 ,sin 60

1 3
,

2 2

3
,

2 2







1 1

1

1 1

T T

T

T T

 

 

 For the second cable, since the angle 30° is measured from the negative x-axis, the angle needed 

to write 2T  in component form is 150°.  Hence, 

 

   cos 150 ,sin 150

3 1
,

2 2

3
,

2 2



 

 

2 2

2

2 2

T T

T

T T

 

 

The requirement   1 2w T T 0  gives us 

 

3 3
0, 50 , , 0,0

2 2 2 2

3 3
, 50 0,0

2 2 2 2

    

   

1 1 2 2

1 2 1 2

T T T T

T T T T
 

Equating the corresponding components of the vectors on each side, we get a system of linear equations 

in the variables 1T  and 2T . 

 

3
0

2 2

3
50 0

2 2


  




  

1 2

1 2

T T

T T
 

From the first equation, we get 31 2T T .  Substituting into the second equation, 

 

 3 3
50 0

2 2

3
50

2

25

  






2 2

2 2

2

T T

T T

T

 

Hence, 3 25 3 43.3  1 2T T .  The tension on the cable making the 60° angle with the ceiling is 

approximately 43.3 pounds and the tension on the cable with the 30° angle is 25 pounds. 
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7.2 Exercises 

 1. Write the vector v  with the initial point  3,1P   and terminal point  5,2Q  in terms of i  and j . 

 2. Write the vector v  with the initial point  6,0P  and terminal point  1, 3Q    in terms of i  and j . 

In Exercises 3 – 4, use the vectors 5 u i j , 2 3  v i j , and 4 w i j  to find the following: 

 3.   u v w  4. 4 2v u  

 5. Let 4 3  v i j .  Find a vector that is half the length and points in the same direction as v . 

 6. Let 5 2 v i j .  Find a vector that is twice the length and points in the opposite direction of v . 

In Exercises 7 – 10, find a unit vector in the same direction as the given vector. 

 7. 3 4 a i j  8. 2 5  b i j  9. 10 c i j  10. 
1 2

2 3
  d i j  

In Exercises 11 – 12, use the given pair of vectors to find the following: v w , v w , v w , and 

w v . 

 11. 3 4 v i j , 2 w j     12. 
1 1

2 2
 v i j , 

1 1

2 2
 w i j  

In Exercises 13 – 15, for the given vector v , find the magnitude v  and an angle   with 0 360    

so that     cos sin  v v i j .  Round approximations to two decimal places. 

 13. 10 v j  14.  v i j  15. 4 v i j  

16. Let 1 2,v vv  be any non-zero vector.  Show that 
1

v
v

 has length 1. 

17. Aida leaves her home and walks 3 miles west, then 2 miles southwest.  How far from home is she, and 

in what direction must she walk to head directly home? 

18. If the captain of the HMS Sasquatch wishes to reach Chupacabra Cove, which is 100 miles away at a 

bearing of S20°E from port, in three hours, what speed and bearing should she set to take into account 

an ocean current of 5 miles per hour?  (Hint: If v  denotes the velocity of the HMS Sasquatch and w  

denotes the velocity of the current, what does v w  need to be to reach Chupacabra Cove in three 
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hours?)  Round the speed to the nearest mile per hour and express the bearing rounded to the nearest 

tenth of a degree. 

19. Cliffs of Insanity Point is located 192 miles from the Pedimaxus International Airport at a bearing of 

N8.2°E.  The wind is blowing from the southeast to the northwest at 25 miles per hour.  What speed 

and bearing should the pilot take so that she makes the trip in 2 hours?  Round the speed to the nearest 

hundredth of a mile per hour and your angle to the nearest tenth of a degree. 

20. The SS Bigfoot leaves Yeti Bay on a course of N37°W at a speed of 50 miles per hour.  After 

traveling half an hour, the captain determines he is 30 miles from the bay and his bearing back to the 

bay is S40°E.  What is the speed and bearing of the ocean current?  Round the speed to the nearest 

mile per hour and express the bearing rounded to the nearest tenth of a degree. 

21. A 600-pound Sasquatch statue is suspended by two cables from a gymnasium ceiling.  If each cable 

makes a 60° angle with the ceiling, find the tension on each cable.  Round your answer to the nearest 

pound. 

22. Two cables are to support an object hanging from a ceiling.  If the cables are each to make a 42° angle 

with the ceiling, and each cable is rated to withstand a maximum tension of 100 pounds, what is the 

heaviest object that can be supported?  Round your answer down to the nearest pound. 

23. A 300-pound metal star is hanging on two cables that are attached to the ceiling.  The left hand cable 

makes a 72° angle with the ceiling while the right hand cable makes an 18° angle with the ceiling.  

What is the tension on each of the cables?  Round your answers to three decimal places. 

24. Two college students have filled a barrel with rocks and tied ropes to it in order to drag it down the 

street in the middle of the night.  The stronger of the two students pulls with a force of 100 pounds at 

a bearing of N77°E and the other pulls at a bearing of S68°E.  What force should the weaker student 

apply to his rope so that the barrel of rocks heads due east?  What resultant force is applied to the 

barrel?  Round your answer to the nearest pound. 

25. Emboldened by the success of their late night barrel pull in the previous exercise, our intrepid young 

scholars have decided to pay homage to the chariot race scene from the movie ‘Ben-Hur’ by tying 

three ropes to a couch, loading the couch with all but one of their friends, and pulling it due west 

down the street.  The first rope points N80°W, the second points due west and the third points 

S80°W.  The force applied to the first rope is 100 pounds, the force applied to the second rope is 40 

pounds and the force applied (by the non-riding friend) to the third rope is 160 pounds.  They need 

the resultant force to be at least 300 pounds; otherwise, the couch won’t move.  Does it move?  If so, 

is it heading due west? 
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7.3 The Dot Product  

Learning Objectives 

 Find the dot product of two vectors. 

 Know and apply properties of the dot product. 

 Use the dot product to determine the angle between two vectors. 

 Determine whether two vectors are orthogonal. 

 Solve application problems using the dot product. 

Thus far in Chapter 7, we have learned how to add and subtract vectors and how to multiply vectors by 

scalars.  In this section, we define a product of vectors. 

Definition and Algebraic Properties of the Dot Product 

We begin with the following definition. 

Definition 7.7. Suppose v  and w  are vectors whose component forms are 1 2,v vv  and 

1 2,w ww .  The dot product of v  and w  is given by 

 1 2 1 2 1 1 2 2, ,v v w w v w v w  v w   

Example 7.3.1. Find the dot product of 3,4v  and 1, 2 w . 

Solution.  

      
3,4 1, 2

3 1 4 2

5

 

  

 

v w 

 

  

Note that the dot product takes two vectors and produces a scalar.  For that reason, the quantity v w  is 

often called the scalar product of v  and w .9  The dot product has the following properties. 

 
9 The dot product may also be referred to as the inner product of two vectors. 
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Theorem 7.5. Properties of the Dot Product:  

 Commutative Property: For all vectors v  and w , v w w v  . 

 Distributive Property: For all vectors u , v , and w ,    u v w u v u w   . 

 Scalar Multiple Property: For all vectors v  and w , and scalars k , 

     k k k v w v w v w   . 

 Magnitude Property: For all vectors v , 
2v v v . 

Like most of the theorems involving vectors, the proof of Theorem 7.5 amounts to using the definition of 

the dot product and properties of real number arithmetic.  To show the commutative property, for 

instance, we let 1 2,v vv  and 1 2,w ww .  Then 

 

1 2 1 2

1 1 2 2

1 1 2 2

1 2 1 2

            definition of dot product

            commutativity of real number multiplication

    definition of dot prod

,

uc, t

,

,

v v w w

v w v w

w v w v

w w v v



 
 





v w

w v

 





 

The distributive property is proved similarly and is left as an exercise.   

For the scalar multiple property, assume that 1 2,v vv , 1 2,w ww , and k  is a scalar.  Then 

 

   

     
   
 

1 2 1 2

1 2 1 2

1 1 2 2

1 1 2 2

1 1 2 2

        definition of scalar multiplication

  definition of dot product

          associativity of real number multiplication

           

, ,

, ,

k k v v w w

k v k v w w

k v w k v w

k v w k v w

k v w v w





 

 

 

v w 



 
 

1 2 1 2

    distributive law for real numbers

        definition of dot prod, uct,k v v w w

k



 v w





 

We leave the proof of    k kv w v w   as an exercise. 

For the last property, if 1 2,v vv  then 

 

1 2 1 2

2 2
1 2

2
                  definition of magnitude

, ,v v v v

v v



 



v v

v

 

 

The following example puts Theorem 7.5 to good use. 
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Example 7.3.2. Prove the identity  2 2 2
2   v w v v w w . 

Solution. We begin by using Theorem 7.5 to rewrite 
2v w  in terms of the dot product. 

 

   
       
       

2
                                                      magnitude property

                           distributive property

                           commutative

   

      

      

v w v w v w

v w v v w w

v v w w v w



 

 

       
         
 
 2 2

 property 

                   distributive property 

  scalar multiple and commutative properties

                                     

1 1 1 1

2

2

       

       

  

  

v v v w w v w w

v v v w v w w w

v v v w w w

v v w w

   

   

  

           magnitude property

 

Hence,  2 2 2
2   v w v v w w  as required. 

  

Taking a look back at the solution to Example 7.3.2, we see that the bulk of the work is needed to show 

that      2    v w v w v v v w w w    .  If this looks familiar, it should.  Since the dot product 

possesses many of the same properties as the real numbers, the steps required to expand     v w v w  

for vectors v  and w  match those required to expand   v w v w   for real numbers v  and w .  Hence, 

we get similar looking results.  The identity verified in Example 7.3.2 plays a large role in the 

development of the geometric properties of the dot product, which we now explore. 

Geometric Properties of the Dot Product 

Suppose v  and w  are two nonzero vectors.  If we draw v  and w  with the same initial point, there are 

two angles determined by the rays containing the vectors v  and w .  We define the angle between v  

and w  to be the angle  , with 0    , determined by those rays, as illustrated below. 



7.3 The Dot Product T7-35 
 

Figure 7.3. 1 

 

0   

Figure 7.3. 2 

 

0     

Figure 7.3. 3 

 

   

The following theorem gives some insight into the geometric role that the dot product plays. 

Theorem 7.6. Geometric Interpretation of the Dot Product: If v  and w  are nonzero vectors, then 

 cos v w v w , where   is the angle between v  and w . 

We prove Theorem 7.6 in cases. 

Case 1: 0   

In this case, we need to show that  cos 0 v w v w v w .  If 0  , then v  and w  have 

the same direction, so kw v  for some positive constant k .  Then 

 

 
 

 
 

2

      scalar multiple property

         magnitude property

  since 0

      Theorem 7.3

k

k

k

k

k

kk

k



















v w v v

v v

v

v v

v v

v v

v v

v w

 



 

This proves the formula holds for 0  . 

Case 2:    

In this case, we need to show that  cos   v w v w v w .  If   , then v  and w  have 

opposite directions.  It follows that kw v  for some negative constant k , and we have 
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2

        scalar multiple property

           magnitude property

  since 0

      Theorem 7.3

k

k

k

k

k

k

k

k













 

 

 

v w v v

v v

v

v v

v v

v v

v v

v w

 



 

Thus, the formula holds for   . 

Case 3: 0     

Here, the vectors v , w , and v w  determine a triangle with side lengths v , w , and v w , 

respectively, as shown in the following diagrams. 

Figure 7.3. 4 

 

Figure 7.3. 5 

 

The Law of Cosines yields  2 2 2
2 cos    v w v w v w .  From Example 7.3.2, we 

know  2 2 2
2   v w v v w w .  Equating these two expressions for 

2v w  gives 

 

   
   
 

2 2 2 2
2 cos 2

2 cos 2

cos







    

  



v w v w v v w w

v w v w

v w v w







 

Thus,  cos v w v w , as required. 

Determining the Angle Between Two Vectors 

An immediate consequence of Theorem 7.6 is the following. 
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Theorem 7.7. Let v  and w be nonzero vectors and let   be the angle between v  and w .  Then 

 arccos    
 

v w

v w


 

The formula in Theorem 7.7 is obtained by solving the equation given in Theorem 7.6 for  .  Since v  

and w  are nonzero, so are v  and w .  Hence, we may divide both sides of  cos v w v w  by 

v w  to get 

  cos  
v w

v w


 

Since 0     by definition, the values of   exactly match the range of the arccosine function.  Hence, 

 arccos    
 

v w

v w


 

An example follows. 

Example 7.3.3. Find the angle between the following pairs of vectors. 

1. 3, 3 3 v  and 3,1 w  

2. 2,2v  and 5, 5 w  

3. 3, 4 v  and 2,1w  

Solution. 
1. For 3, 3 3 v  and 3,1 w , 

  
 

2
2

2
2

3, 3 3 3,1 3 3 3 3 6 3

3 3 3 36 6

3 1 4 2

       

    

    

v w

v

w

 

 

Then 

 
  

arccos

6 3
arccos

6 2

3
arccos

2

5

6





   
 
 

   
 
 

   
 



v w

v w
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2. We have 2,2v  and 5, 5 w , so that 

 2,2 5, 5 10 10 0    v w   

It follows that 

 

 

arccos

0
arccos

arccos 0

2

            and , so 0 and 0





   
 
   

 
 





 

v w

v w

v

v 0 w w

w

0 v



 

3. We find, for 3, 4 v  and 2,1w , 

  22

2 2

3, 4 2,1 6 4 2

3 4 25 5

2 1 5

    

    

  

v w

v

w

 

 

So, 

 

2
arccos arccos

5 5

2 5
arccos

25

         
 

   
 

v w

v w



 

Since 
2 5

25
 is not the cosine of one of the standard angles, we leave the answer as 

2 5
arccos

25


 
   

 
. 

   

Orthogonal Vectors 

We begin with a definition. 

Definition 7.8. Two nonzero vectors v  and w  are called orthogonal and denoted as v w  if the 

angle between them is 
2


 radians or 90°. 

In Example 7.3.3, we found that the angle between the vectors 2,2v  and 5, 5 w  is 
2


, verifying 

that these two vectors are orthogonal.  Geometrically, when orthogonal vectors are sketched with the 
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same initial point, the lines containing the vectors are perpendicular.  The vectors 2,2v  and 

5, 5 w  are sketched below. 

Figure 7.3. 6 

 

The relationship between orthogonal vectors and their dot product follows. 

Theorem 7.8. The Dot Product Detects Orthogonality: Let v  and w  be nonzero vectors.  Then 

v w  if and only if 0v w . 

A proof of Theorem 7.8 follows. 

 Assume v  and w  are nonzero vectors with v w .  By definition, the angle between v  and w  

is 
2


.  Then, from Theorem 7.6, cos 0

2

   
 

v w v w . 

 Conversely, if v  and w  are nonzero vectors and 0v w , by Theorem 7.7, 

 

 

arccos

0
arccos

arccos 0

2





   
 
   
 





v w

v w

v w



 

This verifies that v w . 

While Theorem 7.8 certainly gives us some insight into what the dot product means geometrically, there 

is more to the story of the dot product. 
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Orthogonal Projection 

Consider two nonzero vectors v  and w  drawn with a common initial point O . 

Figure 7.3. 7 

 

Case 1: 0
2

   

Figure 7.3. 8 

 

Case 2: 
2

     

The angle between v  and w , denoted as  , is shown for the case where 0
2

   and the case where 

2

    .  In each of these cases, to visualize the orthogonal projection of v  onto w , we drop a 

perpendicular from the terminal point of v , labeled as T , to the line containing the vector w .  The point 

of intersection of the perpendicular line segment with the line containing w  is labeled as R .  The vector 

OR


p  is called the orthogonal projection of v  onto w . 

Figure 7.3. 9 

 

0
2

   

Figure 7.3. 10 

 

2

     

Like any vector, p  is determined by its magnitude p  and its direction. 
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Case 1: 0
2

   

To determine the magnitude, note that  cos  
p

v
, from which 

 

 

   from cos , Theorem 7.

os

6

c





    
 



v

w

p v

v
w

w
p v

v w

v w
p

w v




  

We determine the direction of p  by finding the unit vector in the 

direction of w , which is 
w

w
.10  It follows that 

Figure 7.3. 11 

 

2

  magnitude of  times unit vector in direction of      
  
   
 
   
 

v w w
p

w w

v w
w

w w

v w
w

p p

w







 

Case 2: 
2

     

Here, we have  cos ' 
p

v
, so that 

 

 
 
  

 

  since ' , Figure 7.3.10

  difference identity for cosine

  fro

'

m co

s

s

cos

co

cos



 



  





 





 



   





 

p v

v

v

v w
v

v w

w

v w v

w

w

v






 

Figure 7.3. 12 

 

 
10 See Figure 7.3.9. 
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The unit vector in the direction of p  is the unit vector in the opposite direction of w , which is 


w

w
.11  We find 

 

2

  magnitude times direction
      
  
   
 

v w w
p

w w

v w
w

w




 

Note that we have the same formula, 2

   
 

v w
p w

w


, for both cases.  Furthermore, this formula also holds 

for 0  , 
2

  , or   . 

 For 0  , graphically p v  and we observe that 

 

 

 

2 2

cos 0 1

                        has same direction as 

cos 0   
 

   
 





v w

v wv w
w w

w w

w
v

w

v



 

 For 
2

  , graphically p 0  and our formula 2

 
 
 

v w
w

w


 also gives the zero vector since v w  

implies that 0v w . 

 For   , graphically p v .  We find 

 

 

 

2 2

cos 1

                         is opposite d t

co

i

s

rec ion of 





   
 

    
 





v w

v wv w
w w

w w

w
v

w

v



 

Finally, we have the following theorem. 

Theorem 7.9. If v  and w  are nonzero vectors, then the orthogonal projection of v  onto w  is 

   2proj
   
 

w

v w
v w

w


 

 
11 See Figure 7.3.10. 
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Example 7.3.4. Let 1,8v  and 1,2 w .  Find  proj wp v  and plot v , w , and p  in standard 

position. 

Solution. 

 

   

     

    

 

2 2

2
2 2

2

1,8 1,2
proj 1,2

1,2

1 1 8 2
1,2

1 2

1 16
1,2

5

3 1,2

          since proj
 

    
   

  
   
 
 




   
 


 



 


ww

v w
v w

w
v

 

 

Hence,  proj 3,6  wp v .  We next plot the three vectors v , w , and p  in standard position. 

Figure 7.3. 13 

 
  

Suppose we want to verify that our solution, 3,6 p , in Example 7.3.4 is indeed the orthogonal 

projection of v  onto w .  Since p 3w , p  is a scalar multiple of w  and therefore has the correct 

direction.  It remains to check the orthogonality condition.  Consider the vector q  whose initial point is 

the terminal point of p , and whose terminal point is the terminal point of v . 
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Figure 7.3. 14 

 

From the definition of vector arithmetic,  p q v ,  so that  q v p .  In the case of Example 7.3.4, with 

1,8v  and 3,6 p , we find 1,8 3,6 4,2   q .  Then 

  
4,2 1,2

4 4

0

 

  



q w 

 

This shows that q w , as required.  

Work 

We close this section with an application of the dot product.  In physics, the work done by a constant 

scalar force F  applied along the direction of motion, when the object moves a distance of d , is 

Work F d .  If the vector force F  applied is not in the direction of the motion, we must consider the 

magnitude of its component along the direction of motion.  Consider the scenario below where the 

constant vector force F  is applied to an object that moves from the point P  to the point Q . 

Figure 7.3. 15 

 

We calculate work as follows. 
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2

2

Work proj
PQ PQ

PQ
PQ PQ

PQ

PQ
PQ PQ

PQ

PQ



 
  
 
 





F

F

F

F




  



 











 

The absolute value sign gives the size of the work.  However, if the force F  is resisting the movement 

then its work is negative, compared to the motion.  This occurs when 
2

    , and in this case PQF

  

is negative.  Thus, if we allow both positive and negative work, then simply work W  is W PQF

 . 

 

Work as a Dot Product: Suppose a constant force F  is applied to an object moving along a line from 

point P  to point Q .  The work W  done by F  is given by 

  W cosPQ PQ  F F
 
  

where   is the angle between F  and PQ


. 

Example 7.3.5. Taylor pulls her red wagon a distance of 50 feet by exerting a force of 10 pounds 

along the handle of the wagon, which makes a 30° angle with the horizontal.  Find the work done by the 

force exerted by Taylor. 

Figure 7.3. 16 

 

Solution. There are two ways to solve this problem. 

 One way is to find the vectors F  and PQ


 so that we can compute W PQF

 .  To do this, we 

assume the origin is at the point where the handle of the wagon meets the wagon and the positive 

x-axis lies along the dashed line in the figure above.  Since the force applied is a constant 10 

pounds, we have 10F .  The force is being applied at a constant angle of 30    with respect 

to the positive x-axis, so Theorem 7.3 gives us 
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   10 cos 30 ,sin 30

3 1
10 ,

2 2

5 3,5







F  

 

Since the wagon is being pulled along 50 feet in the positive direction, the displacement vector is 

 

50

50 1,0

50,0

PQ 





i


 

We get 

 

W

5 3,5 50,0

250 3

PQ





F



  

Since force is measured in pounds and distance is measured in feet, W 250 3  foot-pounds. 

 Alternately, we can use the formulation  W cosPQ  F


 to get 

 

    

 

W 10 pounds 50 feet cos 30

3
500  foot-pounds

2

250 3 foot-pounds
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7.3 Exercises 

 1. Given 3 4 u i j  and 2 3  v i j , calculate u v . 

 2. Given   u i j  and 5 v i j , calculate u v . 

 3. Given 2,4 u  and 3,1 v , calculate u v . 

 4. Given 1,6 u  and 6, 1 v , calculate u v . 

In Exercises 5 – 24, use the given pair of vectors, v  and w , to answer the following:  

 (a) Calculate v w ,  projw v , and the angle   (in degrees) between v  and w . 

 (b) Find the vector  proj  wq v v .  Show that q  and w  are orthogonal by verifying that 0q w . 

 5. 2, 7  v  and 5, 9 w  6. 6, 5  v  and 10, 12 w  

 7. 1, 3v  and 1, 3 w  8. 3,4v  and 6, 8  w  

 9. 2,1 v  and 3,6w  10. 3 3,3 v  and 3, 1  w  

 11. 1,17v  and 1,0 w  12. 3,4v  and 5,12w  

 13. 4, 2  v  and 1, 5 w  14. 5,6 v  and 4, 7 w  

 15. 8,3 v  and 2,6w  16. 34, 91 v  and 0,1w  

 17. 3 v i j  and 4w j  18. 24 7  v i j  and 2w i  

 19. 
3 3

2 2
 v i j  and  w i j  20. 5 12 v i j  and 3 4  w i j  

 21. 
1 3

,
2 2

v  and 
2 2

,
2 2

 w  22. 
2 2

,
2 2

v  and 
1 3

,
2 2

 w  

 23. 
3 1

,
2 2

v  and 
2 2

,
2 2

  w  24. 
1 3

,
2 2

 v  and 
2 2

,
2 2

 w  

25. A force of 1500 pounds is required to tow a trailer.  Find the work done towing the trailer 300 feet 

along a flat stretch of road.  Assume the force is applied in the direction of the motion. 
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26. Find the work done in lifting a 10-pound book 3 feet straight up into the air.  Assume the force of 

gravity is acting downward. 

27. Suppose Taylor fills her wagon with rocks and must exert a force of 13 pounds to pull her wagon 

across the yard.  If she maintains a 15° angle between the handle of the wagon and the horizontal, 

compute how much work Taylor does pulling her wagon 25 feet.  Round your answer to two decimal 

places. 

28. Two college students have filled a barrel with rocks and attached two ropes so that they can drag it 

down the street.  The stronger of the two students pulls with a force of 100 pounds on the rope that 

makes a 13° angle with the direction of motion.  Find the work done by this student if the barrel is 

dragged 42 feet.  Round your answer to two decimal places.  (This scenario was first introduced in the 

Section 7.2 Exercises.) 

29. Find the work done in pushing a 200-pound barrel 10 feet along a 12.5° incline.  (Hint: Find the angle 

between the incline and the gravitational force.)  Round your answer to two decimal places. 

30. Prove the distributive property of the dot product in Theorem 7.5. 

31. Finish the proof of the scalar multiple property of the dot product in Theorem 7.5. 

32. Use the identity in Example 7.3.2,  2 2 2
2   v w v v w w , to prove the Parallelogram Law, 

 2 2 2 21

2
    v w v w v w . 

33. We know that x y x y    for all real numbers x  and y  by the Triangle Inequality (from a prior 

algebra course).  We can now establish a Triangle Inequality for vectors.  In this exercise, we prove 

that   u v u v . 

a) Show that 
2 2 2

2   u v u u v v . 

b) Show that u v u v , known as the Cauchy-Schwarz Inequality.  (Hint: To show this, start 

with the fact that  cos u v u v  and use the fact that  cos 1   for all  .) 

c) Justify the following: 

 

 

2 2 2

2 2

2 2

2

2

2

2

   

  

  

 

u v u u v v

u u v v

u u v v

u v
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d) Use part c to show that   u v u v  for all pairs of vectors u  and v . 

e) As an added bonus, we can now show that the Triangle Inequality z w z w    holds for all 

complex numbers z  and w  as well.  Start by identifying the complex number  z a b i   with the 

vector ,a bu  and identifying the complex number  w c d i   with the vector ,c dv . 
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CHAPTER 8 
PARAMETRIC EQUATIONS 

 
Figure 8.0. 1 

Chapter Outline 

8.1. Sketching Curves Described by Parametric Equations  

8.2. Parametric Descriptions for Oriented Curves 

Introduction 

You have seen curves described by equations in Cartesian coordinates and polar coordinates.  

However, some curves cannot be easily described by a function in either one of these coordinate 

systems.  Here we will use a more general method.  In this method, we will describe the 

coordinates of each point using separate equations called parametric equations.  These equations 

will express each coordinate as a function of a third variable called a parameter.  

In Section 8.1, we will graph curves in the plane that are defined by parametric equations.  We 

then get some practice eliminating the parameter in a pair of parametric equations, leading to 

rewriting the parametric equations for a curve as a single Cartesian equation.  In Section 8.2, we 

will learn to go the opposite direction – rewriting a Cartesian equation as a pair of parametric 

equations.  Finally, we will spend some time altering the parametric equations that define a plane 

curve to change the orientation and/or starting point. 

While this may sound a little overwhelming, know that this is an introduction to these topics.  

We will discuss a few ideas now, then revisit with a more thorough approach in calculus and 

physical science courses. 
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8.1 Sketching Curves Described by Parametric Equations  

Learning Objectives 

 Graph plane curves described by parametric equations. 

 Analyze the behavior of graphs of parametric equations. 

 Eliminate the parameter in a pair of parametric equations. 

As we have seen, most recently in Section 6.2, there are many interesting curves that do not represent 

traditionally defined functions.  In this section, we will represent such curves using two functions.  To 

motivate the idea, imagine a bug crawling across a tabletop starting at point A  and tracing out a curve C  

in the plane, as shown below. 

Figure 8.1. 1 

 

The curve C  does not represent a function.  However, since the bug can be in only one place,  ,P x y , 

at any given time t , we can define the x-coordinates and y-coordinates of P  as functions of t , say 

 x f t  and  y g t . 

Plane Curves and Parametric Equations 

Definition 8.1. Let f  and g  be two functions with the same domain.  The collection of points 

      , ,x y f t g t  in the plane is a plane curve and the equations  x f t  and  y g t  are called 

parametric equations with the parameter t . 

Conversely, if we describe a plane curve C  using parametric equations, we say that we have 

parametrized the curve.  We refer to the equations as a parametrization of the curve C .  As we will 

see later, a parametrization is not unique.  A curve can be described by different sets of parametric 

equations. 
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Example 8.1.1. Sketch the parametric curve: 
2 3

2 1

x t

y t

  


 
 

Solution. We follow the same basic procedure as before, when asked to graph anything new.  After 

choosing convenient values for t , we determine the x- and y-values, plot the corresponding points in the 

plane, and connect the points with a curve.  For example, if we choose 0t  , we find 20 3 3x      and 

 2 0 1 1y     .  These values, along with others, are included in the following table. 

t    2 3x t t     2 1y t t       ,x t y t  

1  2  3   2, 3   

0 3  1   3, 1   

1 2  1  2,1  

2 1 3  1,3  

3 6 5  6,5  
 

Figure 8.1. 2 

 
Notice that as t  increases, a particle whose position is given by these parametric equations moves along 

the curve in the direction of the arrows. 

  

As you can see above, parametric equations not only represent a curve, but also indicate a direction along 

the curve for increasing values of t .  It is important to note, however, that the curve itself is a set of points 

and as such is devoid of any orientation.  The following example is a different parametrization for the 

curve in Example 8.1.1. 

Example 8.1.2. Sketch the parametric curve: 
2 3

2 1

x t

y t

  


  
 

Solution. As in the previous example, we choose values for t  to find points on the graph of this curve. 
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t    2 3x t t     2 1y t t        ,x t y t  

3  6 5  6,5  

2  1 3  1,3  

1  2  1  2,1  

0 3  1   3, 1   

1 2  3   2, 3   
 

Figure 8.1. 3 

 

  

As you can see, the parametric equations in this example describe the same curve, but the direction 

corresponding to the increasing values of t  is opposite to that in Example 8.1.1.  The following example 

is yet another parametrization of the same curve. 

Example 8.1.3. Sketch the parametric curve: 
21

3
4

1

x t

y t

  

   

 

Solution. We select values for t  and determine the corresponding x- and y-coordinates of points on the 

graph. 

t    21
3

4
x t t     1y t t        ,x t y t  

6  6 5  6,5  

4  1 3  1,3  

2  2  1  2,1  

0 3  1   3, 1   

2 2  3   2, 3   
 

Note that these parametric equations describe the same curve as in Example 8.1.2 (refer to Figure 8.1.3).  

The difference is in the values for t  that were used to determine the points on the graph.  In this example, 

we can say that we move from one point to the next in ‘twice the time’. 

  

Note that the curve in the previous three examples looks like a parabola.  We will use the technique of 

substitution later in this section to eliminate the parameter t  and get an equation involving just x  and y .  
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The resulting Cartesian equation will be    2
1 4 3y x   , which describes a horizontal parabola with 

vertex  3, 1  . 

Example 8.1.4. Sketch the parametric curve: 
3

22

x t

y t

 



 for 1 1t    

Solution. We plot a few points to get a sense of the position and orientation of the curve. 

t    3x t t    22y t t      ,x t y t  

1  1  2  1,2  

1

2
  

1

8
  

1

2
 

1 1
,

8 2
  
 

 

0 0 0  0,0  

1

2
 

1

8
 

1

2
 

1 1
,

8 2
 
 
 

 

1 1 2  1,2  
 

Figure 8.1. 4 

 

 

To trace out the path described by the parametric equations: 

 We start at  1,2  where 1t   , then move to the 

right (since x  is increasing) and down (since y  is 

decreasing) through 
1 1

,
8 2

  
 

 to  0,0 . 

 We continue to move to the right (since x  is still 

increasing) but now move upwards (since y  is now 

increasing) until we reach  1,2 , where 1t  . 

Figure 8.1. 5 

 
3

22

x t

y t

 



 for 1 1t    

  

Example 8.1.5. Sketch the parametric curve: 
2

2

5

t

t

x e

y e





 



 for 0t  . 

Solution. We substitute enough values for t  to get a sense of the position, shape, and orientation of the 

curve.  For values of t  other than 0, the corresponding values for x  and y  are approximations, obtained 

from a calculator. 
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t    2 tx t e    25 ty t e      ,x t y t  

0 2 5  2,5  

1 0.73576  0.67668   0.73576,0.67668  

2 0.27067  0.09158   0.27067,0.09158  

 Note that as t  gets large, the values of both  x t  and  y t  approach 0, 

but the point  0,0  is not part of the graph.  The number 0 is not in the 

range of either  x t  or  y t . 

 Since both 2 tx e  and 25 ty e  are decreasing for 0t  , the graph 

will start at  2,5 , where 0t  , and move consistently to the left (since 

x  is decreasing) and down (since y  is decreasing) to approach the 

origin. 

Figure 8.1. 6 

 

2

2

5

t

t

x e

y e





 



 

  

Example 8.1.6. Sketch the parametric curve: 
 
 

cos

sin

x a t

y a t

 



 for 0a  . 

Solution. Since there is no restriction on values for t , we choose to start with 
2

t


  .   (Other starting 

values for t  would also work here.)  We identify enough points on the graph to envision its behavior.  

Note that    cosx t a t  and    siny t a t . 

t      ,x t y t   t      ,x t y t  

2


   0, a   

3

4


 

2 2
,

2 2
a a

 
  
 

 

4


  

2 2
,

2 2
a a

 
  

 
     ,0a  

0  ,0a   
5

4


 

2 2
,

2 2
a a

 
   
 

 

4


 

2 2
,

2 2
a a

 
  
 

  
3

2


  0, a  

2


  0,a     
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Observing that the points  ,x y  have begun repeating, we can stop here and plot the points in the table, 

sketching the curve and adding arrows to indicate direction.  The resulting graph is a circle.  (Justification 

for the shape of this graph will be given in Example 8.1.11.) 

Figure 8.1. 7 

 

 
 

cos

sin

x a t

y a t

 



 for 0a    

  

Example 8.1.7. Sketch the parametric curve: 
 

 
1 3cos

2sin

x t

y t

  



 for 

3
0

2
t


  . 

Solution. Plugging in the values 0t  , 
4


, 

2


, 

3

4


,  , 

5

4


, and 

3

2


 gives the following  ,x y  

coordinates. 

t           , 1 3cos ,2sinx t y t t t   

0  4, 0  

4


  3 2

1 , 2 3.1, 1.4
2

 
   

 
 

2


  1, 2  

3

4


  3 2

1 , 2 1.1, 1.4
2

 
    

 
 

   2, 0  

5

4


  3 2

1 , 2 1.1, 1.4
2

 
      

 
 

3

2


  1, 2  
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Following is the resulting graph. 

Figure 8.1. 8 

 

 
 

1 3cos

2sin

x t

y t

  



 for 

3
0

2
t


   

  

The graph looks suspiciously like a portion of an ellipse; we will find shortly that this is indeed the case. 

Example 8.1.8. Sketch the parametric curve: 
 
 2

2 tan

5cos

x t

y t

 



 for 

2 2
t

 
   . 

Solution. We select enough values for t  between 
2


  and 

2


 to get a good grasp on the shape and 

orientation of the curve. 
 

t     2 tanx t t     25cosy t t      ,x t y t  

3


  2 3  

5

4
 

5
2 3,

4
  
 

 

4


  2  

5

2
 

5
2,

2
  
 

 

6


  

2

3
  15

4
 

2 15
,

43

  
 

 

0 0 5  0,5  

6


 

2

3
 15

4
 

2 15
,

43

 
 
 

 

4


 2 

5

2
 

5
2,

2
 
 
 

 

3


 2 3  

5

4
 

5
2 3,

4
 
 
 

 

 

Note that as t  approaches 
2


 , x  approaches  , and as t  approaches 

2


, x  approaches  .  The 

curve follows. 
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Figure 8.1. 9 

 

  

This curve is referred to as the ‘Witch of Agnesi’, named after the Italian mathematician Maria Gaetana 

Agnesi.  The title is a mistranslation of ‘averisera’ from Italian.  It is an interesting curve to research.  

Other interesting parametric curves include the ‘Folium of Descartes’ the ‘Bicorn’, and the ‘Astroid’. 

Eliminating the Parameter in a Pair of Parametric Equations  

Several curves in the previous examples resemble graphs we have seen before.  We revisit some of these 

examples and eliminate the parameter to determine a Cartesian equation.  Eliminating the parameter t  

refers to finding a single equation for the curve relating x  and y  in which t  does not appear. 

Example 8.1.9. Eliminate the parameter t  to determine a Cartesian equation for the curve from 

Example 8.1.1:  

2 3

2 1

x t

y t

  


 
 

Solution. We use the technique of substitution to eliminate the parameter in the system of equations. 

The first step is to solve 2 1y t   for t . 

2 1

1 2

1

2

y t

y t

y
t

 
 




 

Substituting this result into the equation 2 3x t   yields 

 

   

2

2

2

1
3

2

1
3

4

1 4 3

y
x

y
x

y x
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We note that the graph of the equation    2
1 4 3y x    is a horizontal parabola with vertex  3, 1   

that opens to the right.  While eliminating the parameter does not affect the shape of the curve, the 

orientation of the curve is lost in the transition to a Cartesian equation.  Recall the following graph from 

Example 8.1.1: 

Figure 8.1. 10 

 

2 3

2 1

x t

y t

  


 
 

 

  

For practice, try eliminating the parameter in Example 8.1.2 and Example 8.1.3.  The resulting Cartesian 

equation in each of these should be    2
1 4 3y x   , since the same curve is being sketched in each of 

the first three examples. 

Example 8.1.10. Eliminate the parameter t  to determine a Cartesian equation for the curve from 

Example 8.1.5: 

2

2

5

t

t

x e

y e





 



 for 0t   

Solution. To eliminate the parameter, one way to proceed is to solve 2 tx e  for t . 

2

2

ln ln
2

ln
2

ln
2

t

t

t

x e

x
e

x
e

x
t

x
t
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Substituting ln
2

x
t     

 
 for t  in 25 ty e  gives 

 

2

2 ln
2

2ln
2

ln
2

2

2

5

5

5

5
2

5

4

x

x

x

y e

e

e

x

x

     
  

 
 
 

 
 
 







   
 



 

Figure 8.1. 11 

 

2

2

5

t

t

x e

y e





 



 for 0t    

We get 25

4
y x  as the Cartesian equation for the curve.  This is a parabola with vertex  0,0  that opens 

upward.  The parametrized curve is only a portion of this parabola.  From the solution to Example 8.1.5, 

we know the parametrized function is defined for 0x   and 0y  .  Additionally, the restriction 0t   

requires x  to be less than or equal to 2 since 02 2 2tx e e   , and y  to be less than or equal to 5 since, 

similarly, 2 05 5 5ty e e   .  The parametrized curve is the portion of the parabola 25

4
y x  that starts at 

the point  2,5  and heads toward, but never reaches,  0,0 . 

  

When eliminating a parameter from a set of parametric equations, it is not always advisable to completely 

solve for the parameter and then use direct substitution.  For example, eliminating the parameter in 

Example 8.1.10 could have been achieved in fewer steps as follows:  

 
2

2 2

2

2

       Solve for .

  Square both sides of the equation.

      Rewrite in preparation for substituting into 5 . 

2

2

2

4

t

t

t

t

t

t

x

e e

e

e

x

y

x
e

x
e















   
 



 

Substituting this result in 25 ty e , we get 
2 25

5
4 4

x x
y    .  The following example uses another 

technique that works well as an alternate to solving one of the parametric equations for t .  This method is 

particularly useful for eliminating parameters in trigonometric equations. 
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Example 8.1.11. Eliminate the parameter t  to determine a Cartesian equation for the curve from 

Example 8.1.6: 

 
 

cos

sin

x a t

y a t

 



 for 0a   

Solution. To eliminate the parameter, note that the trigonometric functions involved, namely  cos t  

and  sin t , are related by the Pythagorean identity    2 2cos sin 1t t  .  After rewriting  cosx a t  to 

get  cos
x

t
a

  and  siny a t  to get  sin
y

t
a

 , we substitute in    2 2cos sin 1t t   with the result 

2 2

1
x y

a a
       
   

.  After simplifying, we have the Cartesian equation 2 2 2x y a  , the equation of a circle 

with center  0,0  and radius a .  This confirms our statement from Example 8.1.6 that the equation is 

that of a circle. 

  

Example 8.1.12. Eliminate the parameter t  to determine a Cartesian equation for the curve from 

Example 8.1.7: 

 
 

1 3cos

2sin

x t

y t

  



 for 

3
0

2
t


   

Solution. To eliminate the parameter here, as in the previous example, we make use of the Pythagorean 

identity. 

We solve  1 3cosx t   for  cos t  to get 

  1
cos

3

x
t


  and  2siny t  for  sin t  to get 

 sin
2

y
t  .  Substituting these expressions into 

   2 2cos sin 1t t   gives 

 
 

2 2

2 2

1
1

3 2

1
1

9 4

x y

x y

       
   


 

 

Figure 8.1. 12 

 

 
 

1 3cos

2sin

x t

y t

  



 for 

3
0

2
t
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The equation 
 2 21

1
9 4

x y
   is that of an ellipse centered at  1,0  with vertices at  2,0  and  4,0 .  

The parametric equations trace out three-quarters of this ellipse in a counter-clockwise direction.   

Note that we would need to restrict the domain and range of the ellipse 
 2 21

1
9 4

x y
   to result in the 

part of the ellipse that is graphed above.  One way to do that would be to include only the x- and y-

coordinates such that 2 2y    when 2 1x    and 0 2y   when 1 4x  .  Another solution would 

be to solve the equation of the ellipse for y; that is  24
4 1

9
y x    .  Now, the top and bottom 

portions of the curve can be described, separately, as functions.  The top portion is  24
4 1

9
y x    for 

2 4x    and the bottom portion is  24
4 1

9
y x     for 2 1x   . 
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8.1 Exercises 

In Exercises 1 – 6, graph the parametric curve by completing the suggested table of values.  Include the 

orientation on the graph.  

 1. 
2 1

x t

y t




 
 2. 

2

1x t

y t

 



 

t  x t   y t  

−3   

−2   

−1   

0   

1   

2   

3   
 

t  x t   y t  

−3   

−2   

−1   

0   

1   

2   
 

 3. 
2

3 2

x t

y t

 
  

 4. 
2 2

3

x t

y t

  
  

 

t  x t   y t  

−2   

−1   

0   

1   

2   

3   
 

t  x t   y t  

−3   

−2   

−1   

0   

1   
 

 5. 
3

2

x t

y t

 


 
 6. 

2

3

x t

y t

 


 
 

t  x t   y t  

−2   

−1   

0   

1   

2   
 

t  x t   y t  

−2   

−1   

0   

1   

2   
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In Exercises 7 – 28, sketch the curve defined by the parametric equations by hand and indicate the 

orientation of the curve. 

 7. 
4 3

 for 0 1
6 2

x t
t

y t

 
   

 8. 
4 1

 for 0 1
3 4

x t
t

y t

 
   

 

 9. 
2

2
 for 1 2

x t
t

y t


  


 10. 

2

 for 0 5
3

x t
t

y t

 
 


 

 11. 
2

1
 for 0 3

3 2

x t
t

y t t

 
 

  
 12. 

2 2 1
 for 1

1

x t t
t

y t

   


 
 

 13. 
 21
18

9  for 3
1

3

x t
t

y t

    
 


 14. 
2

 for 0 5
25

x t
t

y t

  
 

 

 15.  for 0
x t

t
y t

  


 16. 
 
 

cos
 for 

2 2sin

x t
t

y t

     


 

 17. 
 
 

3cos
 for 0

3sin

x t
t

y t


   


 18. 
 

 
2cos

 for 0
6sin

x t
t

y t


    


 

 19. 
 

 
1 3cos

 for 0 2
4sin

x t
t

y t


     


 20. 
 
 

3cos
 for 2

22sin 1

x t
t

y t

 
   

 
 

 21. 
 

 
2cos

 for 0
2sec

x t
t

y t

   


 22. 
 

 
2 tan

 for 0
2cot

x t
t

y t

   


 

 23. 
 
 

sec
 for 

2 2tan

x t
t

y t

     


  24. 
 
 

sec 3
 for 

2 2tan

x t
t

y t

    


 

 25. 
 
 

tan
 for 

2 22sec

x t
t

y t

     


 26. 
 
 

tan 3
 for 

2 22sec

x t
t

y t

    


 

 27. 
 cos

 for 0
x t

t
y t


   


 28. 

 sin
 for 

2 2

x t
t

y t
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In Exercises 29 – 37, sketch the parametric curve by hand and indicate the orientation of the curve. 

 29. 
3

x t

y t





 30. 

3x t

y t

 



 31. 

5

2

x t

y t

  


 
 

 32. 
2

5

x t

y t

  
  

 33. 
 
 

4sin

2cos

x t

y t

 



 34. 

 
 

2sin

4cos

x t

y t

 



 

 35. 
 
 

23cos

3sin

x t

y t

 


 
 36. 

 
 

2

2

3cos

3sin

x t

y t

 


 
 37. 

 
 

2cos

sin

x t

y t

 


 
 

In Exercises 38 – 55, eliminate the parameter t  to determine a Cartesian equation for the curve.  In 

Exercises 50 – 53, your answer should not include trigonometric functions. 

 38. 
5

8 2

x t

y t

 
  

 39. 
6 3

10

x t

y t

 
  

 40. 
2 1

3

x t

y t

 



 

 41. 
2

3 1

2

x t

y t

 



 42. 

2

1 5

tx e

y t

 


 
 43. 

2

2

t

t

x e

y e





 



 

 44. 
 4log

3 2

x t

y t

 


 
 45. 

 log 2

1

x t

y t

 


 
 46. 

3 1

2

x t

y t

  



 

 47. 
4

2

x t t

y t

  


 
 48. 

2

6

t

t

x e

y e

 



 49. 

5

10

x t

y t

 



 

 50. 
 
 

4cos

4sin

x t

y t

 



 51. 

 
 

3sin

6cos

x t

y t

 



 52. 

 
 

22cos

sin

x t

y t

 


 
 

 53. 
 
 2

cos 4

2sin

x t

y t

  



 54. 

2

1x t

y t

 



 55. 

3 1

x t

y t

 


 
    

In Exercises 56 – 59, sketch the parametric curve for the indicated parameter values with the help of a 

graphing utility and indicate the orientation of the curve. 

 56. 
3

2

3
 for 2 2

4

x t t
t

y t

     
 

 57. 
 
 

3

3

4cos
 for 0 2

4sin

x t
t

y t
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 58. 
  

  
 for 2 2

t t

t t

x e e
t

y e e





     
 

 59. 
 
 

cos 3
 for 0 2

sin 4

x t
t

y t


   


 

In Exercises 60 – 63, use a graphing utility to view the graph of each of the four sets of parametric 

equations.  Although they look unusual and beautiful, they are so common they have names, as indicated 

in each exercise. 

 60. An epicycloid: 
   
   

14cos cos 14
 for 0 2

14sin sin 14

x t t
t

y t t


    
 

 

 61. A hypocycloid: 
   
   

6sin 2sin 6
 for 0 2

6cos 2cos 6

x t t
t

y t t


    
 

 

 62. A hypotrochoid: 
   
   

2sin 5cos 6
 for 0 2

5cos 2sin 6

x t t
t

y t t


    
 

 

 63. A rose: 
   
   

5sin 2 sin
 for 0 2

5sin 2 cos

x t t
t

y t t
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8.2 Parametric Descriptions for Oriented Curves  

Learning Objectives 

 Parametrize curves given in Cartesian coordinates. 

 Reverse orientation and shift the starting point of a curve described by 

parametric equations. 

 Apply parametric equations to applications involving projectile motion.  

We next turn to the problem of finding parametric representations for curves. 

Parametrizing Curves 

Parametrizations of Common Curves 

1. To parametrize  y f x , one option is to use the parametric equations x t  and  y f t .  
 

2. To parametrize  x g y , one option is to set  x g t  and y t . 
 

3. To parametrize a ‘directed’ line segment with initial point  0 0,x y  and terminal point  1 1,x y , 

one option is to let  0 1 0x x x x t    and  0 1 0y y y y t    for 0 1t  . 

 

4. To parametrize 
   2 2

2 2
1

x h y k

a b

 
  , where 0a   and 0b  , one option is to let 

 cosx h a t   and  siny k b t   for 0 2t   .  (This will impart a counterclockwise 

orientation.) 

The reader is encouraged to verify the above formulas by eliminating the parameter and, when indicated, 

checking the orientation.  Further explanation for each of these parametrizations follows. 

1. For  y f x , setting x t  results in    y f x f t  .  

2. Given  x g y , setting y t  results in    x g y g t  . 

3. For the ‘directed’ line segment, 1 0x x  is the displacement in the x-direction and 1 0y y  is the 

displacement in the y-direction.  We can think of the right side of the formulas  0 1 0x x x x t    

and  0 1 0y y y y t   , for 0 1t  , as ‘starting point + (displacement)⋅ t ’, where 0t   is the 

initial point  0 0,x y  and 1t   is the terminal point  1 1,x y .  (See the 7.1 Exercises, #65.) 
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4. The parametrization for 
   2 2

2 2
1

x h y k

a b

 
   is based on the Pythagorean identity 

   2 2cos sin 1t t  .  We set  cos
x h

t
a


  and  sin

y k
t

b


 , then solve for x  and y  to get, 

respectively,  cosx h a t   and  siny k b t  .  By periodicity of the cosine and sine 

functions, we only need one period of each, and have chosen 0 2t   .  The choice of using the 

cosine function for the x-values and the sine function for the y-values results in the 

counterclockwise rotation.  Switching this choice would result in a clockwise rotation and a 

different starting point.  

We put these formulas to good use in the following examples. 

Example 8.2.1. Find a parametrization for the curve 2y x  from 3x    

to 2x  . 

Solution. The curve, along with its orientation, is graphed to the right.  To 

parametrize the curve, we let x t  so that 2 2y x t  .  For x t , the bounds 

on t  match precisely the bounds on x  so that we get 

 
2

x t

y t





 for 3 2t    

Figure 8.2. 1 

 

  

Example 8.2.2. Find a parametrization for the curve 5 2 1x y y   . 

Solution. A graph of the curve that includes its orientation is shown below.  We parametrize the curve 

by setting y t  and get 5 52 1 2 1x y y t t      .  Since y t , and there are no bounds placed on y , it 

follows that there are no bounds placed on t . 

Our final answer is  

           
5 2 1x t y

y t

   



 for t     

Figure 8.2. 2 

 
  



8.2 Parametric Descriptions for Oriented Curves T8-21 
 

Example 8.2.3. Find a parametrization for the line segment that starts at  2, 3  and ends at  1,5 . 

Solution. A graph of the oriented line segment appears to the 

right.  To parametrize the directed line segment, we begin by noting 

that the displacement in the x-direction is 1 0 1 2 1x x      and the 

displacement in the y-direction is  1 0 5 3 8y y     .  Using the 

initial point    0 0, 2, 3x y   , we find the parametrization is 

 0 1 0 2x x x x t t      and  0 1 0 3 8y y y y t t       for 

0 1t  .  Our final answer is 

2

3 8

x t

y t

 
   

 for 0 1t   

Figure 8.2. 3 

 

                                       

Example 8.2.4. Find a parametrization for the circle 2 22 4 4x x y y    . 

Solution. In order to use the formulas  cosx h a t   and  siny k b t   to parametrize the circle 

2 22 4 4x x y y    , we first need to put it into the correct form, 
   2 2

2 2
1

x h y k

a b

 
  . 

   
   
   

2 2

2 2

2 2

2 2

2 4 4

2 4 4

1 2 9

1 2
1

9

1 4

9

4 1

x x y y

x x y y

x y

x y

   

   

  


















 

Then 
    

2 2

2 2

1 2
1

3 3

x y  
  , from which

1h   , 2k  , and 3a b  . 

A parametrization for the circle, graphed to the 

right, is 

          
 

 
1 3cos

2 3sin

x t

y t

   


 
 for 0 2t    

 

Figure 8.2. 4 
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Example 8.2.5. Find a parametrization for the left half of the ellipse 
2 2

1
4 9

x y
  . 

Solution. In the equation 
2 2

1
4 9

x y
  , we can either use the formulas or think back to the Pythagorean 

identity    2 2cos sin 1t t  , along with 
2 2

1
2 3

x y       
   

, to write x  and y  as functions of t . 

 

 

cos
2

2cos

x
t

x t




 

 

 

sin
3

3sin

y
t

y t




 

 

The normal range on the parameter in this case is 0 2t   , but 

since we are interested in only the left half of the ellipse, we restrict 

t  to the values that correspond to Quadrant II and Quadrant III 

angles, namely 
3

2 2
t

 
  .   

A parametrization for this curve, graphed to the right, is 

          
 
 

2cos

3sin

x t

y t

 



 for 

3

2 2
t

 
   

Figure 8.2. 5 

 

  

Note that the formulas provided prior to these examples offer only one of literally infinitely many ways to 

parametrize the common curves listed there. 

Adjusting Parametric Equations 

At times, the formulas that define a parametric curve need to be altered to suit the situation.  Two easy 

ways to alter the parametrizations are given below. 

Adjusting Parametric Equations 

 Reversing Orientation: Replacing every occurrence of t  with t  in a parametric description 

for a curve (including any inequalities that describe the bounds on t ) reverses the orientation 

of the curve. 

 Shift of Parameter: Replacing every occurrence of t  with t c  in a parametric description 

for a curve (including any inequalities that describe the bounds on t ) shifts the start of the 

parameter t  ahead by c  units. 

These techniques are demonstrated in the next example. 
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Example 8.2.6. Find a parametrization for the following curves. 

1. The curve that starts at  2,4 , follows the parabola 2y x , and ends at  1,1 , with the 

parameter shifted so that the path starts at 0t  .  

2. The two part path that starts at  0,0 , travels along a straight line to  3,4 , and then travels 

along another straight line to  5,0 . 

3. The Unit Circle, oriented clockwise, with 0t   corresponding to  0, 1  

Solution. 

1. The desired curve is shown below.  We can parametrize 2y x  from 1x    to 2x   as  

2

x t

y t





 for 1 2t   .  This parametrization, however, starts at  1,1  and ends at  2,4 .  We 

need to reverse the orientation.  To do so, we replace every occurrence of t  with t  to get x t   

and  2
y t   for 1 2t    .  After simplifying, we have 

2

x t

y t

 



 for 2 1t   . 

We would next like to begin at 0t   instead of 2t   .  The 

problem here is that the parametrization we have starts 2 units 

too soon, so we need to introduce a time delay of 2.  This may 

be accomplished by replacing every occurrence of t  with 

2t  , resulting in  2x t    and  2
2y t   for 

2 2 1t    .  Simplifying yields 

                      
2

2

4 4

x t

y t t

 


  
 for 0 3t   

Figure 8.2. 6 

 

 

2. When parametrizing line segments, we think: starting point + (displacement)⋅ t .  For the first part 

of the path, that starts at  0,0  and travels along a line to  3,4 , we get 

3

4

x t

y t


 

 for 0 1t   

For the second part, that starts at  3,4  and travels to  5,0 , we get 

3 2

4 4

x t

y t

 
  

 for 0 1t   
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Since the first parametrization leaves off at 1t  , we shift the parameter in the second part so that 

it starts at 1t  .  Our current description of the second part starts at 0t  , so we introduce a time 

delay of 1 unit to the second set of parametric equations by replacing t  with 1t  .  The second 

set of parametric equations becomes  3 2 1x t    and  4 4 1y t    for 0 1 1t   .  

Simplifying yields 

1 2

8 4

x t

y t

 
  

 for 1 2t   

In summary, the path, shown in the figure to the right, may 

be parametrized as follows: 

 
 

x f t

y g t

 



 for 0 2t  , where 

        
3  for 0 t 1 

1 2  for 1 2

t
f t

t t

 
    

and 

  4  for 0 1

8 4  for 1 t 2

t t
g t

t

 
    

 

Figure 8.2. 7 

 

3. To parametrize the Unit Circle with a clockwise orientation and ‘starting point’ of  0, 1  

corresponding to 0t  , we first note that a counterclockwise orientation is given by 

 
 

cos

sin

x t

y t

 



 for 0 2t    

We reverse the direction by replacing t  with t .  This results in  cosx t   and  siny t   

for 0 2t    , which (after applying the even/odd identities) simplifies to 

 
 

cos

sin

x t

y t

 


 
 for 2 0t    

This parametrization gives a clockwise orientation, but 0t   corresponds to the point  1,0 ; the 

point  0, 1  is reached when 
3

2
t


  .  Our strategy is to first get the parametrization to start at 

the point  0, 1  and then shift the parameter accordingly so the start coincides with 0t  . 

 We know that any interval of length 2  will parametrize the entire circle, so we keep the 

equations  cosx t  and  siny t  , but start the parameter t  at 
3

2


 , and find the 

upper bound by adding 2  so that 
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cos

sin

x t

y t

 


 
 for 

3

2 2
t

 
    

The reader can verify that the Unit Circle is traced out clockwise starting at the point 

 0, 1 . 

 To shift the parameter so that the start coincides with 

0t  , we introduce a time delay of 
3

2


 units by 

replacing each occurrence of t  with 
3

2
t


 .  We get 

3
cos

2
x t

   
 

 and 
3

sin
2

y t
    

 
 for 

3 3

2 2 2
t

  
    . 

Figure 8.2. 8 

 

Applying sum/difference formulas, this simplifies to 
 
 

sin

cos

x t

y t

  


 
 for 0 2t   .  The 

parametrized curve is shown above. 

   

We put the answer to Example 8.2.6, part 3, to good use to derive the equation of a cycloid.  Suppose a 

circle of radius r  rolls along the positive x-axis at a constant speed v  as pictured below.  Let   be the 

angle in radians that measures the amount of clockwise rotation experienced by the radius highlighted in 

the following figure. 

Figure 8.2. 9 

 

Our goal is to find parametric equations for the coordinates of the point  ,P x y  in terms of  .  From our 

work in Example 8.2.6, part 3, we know that clockwise motion along the Unit Circle starting at the point 

 0, 1  can be modeled by the equations 
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sin

cos

x

y





  


 
 for 0 2    

(We have renamed the parameter as   to match the context of this problem.)  To model this motion on a 

circle of radius r , all we need to do1 is multiply both x  and y  by the factor r , which yields 

 
 

sin

cos

x r

y r





  


 
 

We now need to adjust for the fact that the circle is not stationary but is rolling along the positive x-axis, 

and its center is not  0,0 .  Since the speed v  is constant, we know that at time t  the center of the circle 

has traveled a distance vt  down the positive x-axis.  Furthermore, since the radius of the circle is r  and 

the circle is not moving vertically, we know that the center of the circle is always r  units above the 

x-axis.  Putting these two facts together, at time t  the center of the circle is at the point  ,vt r . 

From Section 2.3, we know the angular speed is 
t

   and the linear speed is v r .  Putting these 

together, we have 
r

v
t


 , or vt r .  Hence, the center of the circle, in terms of the parameter  , is 

 ,r r . 

As a result, we need to modify the equations  sinx r    and  cosy r    by shifting the 

x-coordinates to the right r  units (by adding r  to the expression for x ) and the y-coordinates up r  

units (by adding r  to the expression for y ).  We get  sinx r r     and  cosy r r   , which 

can be written as 

  
  

sin

1 cos

x r

y r

 



  


 
 

Since the motion starts at 0   and proceeds indefinitely, we set 0  . 

Example 8.2.7. Find the parametric equations of a cycloid which results from a circle of radius 3 

rolling down the positive x-axis. 

 

1 If we replace x  with 
x

r
 and y  with 

y

r
 in the equation for the Unit Circle, we obtain 

2 2

1
x y

r r
       
   

, which 

reduces to 2 2 2x y r  .  Note that we are ‘stretching the graph by a factor of r  in both the x- and y-directions.  

Hence, we multiply both the x- and y-coordinates of points on the graph by r . 
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Solution. We completed the major part of our work above.  With 3r  , we have the equations 

  
  

3 sin

3 1 cos

x t t

y t

  


 
 for 0t   

(Here we have returned to the convention of using t  as the parameter.) 

  

In the previous example, we note that one full revolution of the circle occurs over the interval 0 2t   , 

as shown in the following figure.  As t  ranges between 0 and 2 , we see that x  ranges between 0 and 

6 .  The values of y  range between 0 and 6. 

Figure 8.2. 10 

 

  
  

3 sin

3 1 cos

x t t

y t

  


 
 for 

0 2t    

 

Below, we extend t  to range from 0 to 6 , which forces x  to range from 0 to 18 , yielding three arches 

of the cycloid. 

Figure 8.2. 11 

 

  
  

3 sin

3 1 cos

x t t

y t

  


 
 for 0 6t    
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Projectile Motion 

Projectile motion occurs when an object is launched into the air.  

Suppose an object is launched at time zero from the initial point 

 00,s  with a velocity of magnitude 0v  and the direction angle  , 

as shown to the right. 

 

Not taking into account the air resistance, the coordinates of the 

object at time t  are given below. 

Figure 8.2. 12 

 

Equations for Projectile Motion 

The position of an object launched at time 0t   from the initial position  00,s , with initial velocity of 

magnitude 0v  and direction angle  , is 

 

 

0

2
0 0  

cos

1
sin

2

x v t

y s v t g t





    


      

 

at time t , where g  is the constant acceleration due to gravity. 

Example 8.2.8. From a height 4 feet above the ground, a baseball is hit with an initial speed of 110 

miles per hour at an angle of 30°.  How far will the baseball travel (horizontally), and what is its 

maximum height? 

Solution. To use the equations for projectile motion, with 0 4s   feet, 0 110v   miles/hour, and 

30   , we start by converting 0v  to feet per second. 

0

110 miles 5280 feet 1 hour

hour mile 3600 seconds
484

 feet/second
3

v   


 

Noting that acceleration due to gravity is 32g   ft/sec2, and using the equations for projectile motion, we 

find  484
cos 30

3
x t    

  and     2484 1
4 sin 30 32

3 2
y t t     

 .  After evaluating the sine and cosine 

values and simplifying, the equations are 

242

3
x t  and 2 242

16 4
3

y t t     
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The equations are graphed below (with the aid of a calculator to determine x- and y-values). 

Figure 8.2. 13 

 

2

242

3
242

16 4
3

x t

y t t

 

    

 

To determine how far the baseball will travel horizontally, we look for the time when the height of the 

ball is zero.  The time is found by setting y  equal to zero: 2 242
16 4 0

3
y t t     .  After applying the 

quadratic formula,  

  

 

2
242 242

4 16 4
3 3

2 16
t

     
 


 

Then 0.4911t    or 5.0908t  .  The time we are looking for is when the ball lands, so we choose 

5.0908t   seconds.  We plug this value into 
242

3
x t  to get 711.28x  , and conclude that the ball 

travels a horizontal distance of approximately 711.28 feet. 

Next, noting that the maximum height occurs at the largest y-value, we find the y-coordinate of the vertex 

for the quadratic function 2 242
16 4

3
y t t    .  At the vertex, 

 

242
1213

2 2 16 48

b
t

a
    


 

Then 
2

2 242 121 242 121
16 4 16 4

3 48 3 48
y t t                

    
, from which 105.67y  .  So, the maximum 

height of the ball is approximately 105.67 feet. 

  



T8-30 Parametric Equations 

8.2 Exercises 

In Exercises 1 – 4, parametrize (write parametric equations for) each Cartesian equation by setting the 

independent variable equal to t . 

 1. 23 3y x   2.  2sin 1y x   3. 3logx y y   4. 2x y y   

In Exercises 5 – 8, parametrize (write parametric equations for) each Cartesian equation by using 

 cosx a t  and  siny b t , for appropriate a  and b  values.  Identify the curve. 

 5. 
2 2

1
4 9

x y
   6. 

2 2

1
16 36

x y
   7. 2 2 16x y   8. 2 2 10x y   

In Exercises 9 – 23, find a parametric description for the given oriented curve. 

 9. The directed line segment from  3, 5  to  2,2  

 10. The directed line segment from  2, 1   to  3, 4  

 11. The curve 24y x   from  2,0  to  2,0  

 12. The curve 24y x   from  2,0  to  2,0  

(Shift the parameter so 0t   corresponds to  2,0 .) 

 13. The curve 2 9x y   from  5, 2   to  0,3  

 14. The curve 2 9x y   from  0,3  to  5, 2   

(Shift the parameter so 0t   corresponds to  0,3 .) 

 15. The circle 2 2 25x y  , oriented counterclockwise 

 16. The circle  2 21 4x y   , oriented counterclockwise 

 17. The circle 2 2 6 0x y y   , oriented counterclockwise 

 18. The circle 2 2 6 0x y y   , oriented clockwise 

(Shift the parameter so t  begins at 0.) 

 19. The circle    2 2
3 1 117x y    , oriented counterclockwise 

 20. The ellipse  2 21 9 9x y   , oriented counterclockwise 
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 21. The ellipse 2 29 4 24 0x y y   , oriented counterclockwise 

 22. The ellipse 2 29 4 24 0x y y   , oriented clockwise 

(Shift the parameter so 0t   corresponds to  0,0 .) 

 23. The triangle with vertices  0,0 ,  3,0  and  0,4 , oriented counterclockwise 

(Shift the parameter so 0t   corresponds to  0,0 .) 

24. Use parametric equations and a graphing utility to graph the inverse of   3 3 4f x x x   . 

25. Every polar curve  r f   can be translated to a system of parametric equations with parameter   

by              cos cos , sin sinx r f y r f           .  Convert  6cos 2r   to a system 

of parametric equations.  Check your answer by graphing  6cos 2r   by hand and then graphing 

the parametric equations you found using a graphing utility. 

26. A dart is thrown upward from the ground level with an initial velocity of 65 feet/second at an angle of 

elevation of 52°.  Consider the position of the dart at any time t .  Neglect air resistance. 

a) Find parametric equations  x f t  and  y g t  that model the position of the dart.  For 

gravity, use 32 feet per second squared. 

b) How far away from its initial launch point does the dart hit the ground? 

c) When will the dart hit the ground? 

d) Find the maximum height of the dart. 

e) At what time will the dart reach maximum height? 

27. Suzanne’s friend Jason competes in Highland Games Competitions across the country.  In one event, 

the ‘hammer throw’, he throws a 56 pound weight for distance.  If the weight is released 6 feet above 

the ground at an angle of 42° with respect to the horizontal, with an initial speed of 33 feet per 

second, find parametric equations for the flight of the hammer.  For gravity, use 32 feet per second 

squared.  When will the hammer hit the ground?  Check your answer with a graphing utility. 



T8-32 Parametric Equations 

28. Recall the equations for projectile motion: 

 
 

 

0

2
0 0  

cos

1
sin

2

x v t

y s v t g t





    


      

  

Eliminate the parameter in the equations for projectile motion to show that the path of the projectile 

follows the curve 
   

2
2

02
0

sec
tan

2

g
y x x s

v


    . 

Recall that for a quadratic function   2f x ax bx c   , the vertex can be determined using the 

formula ,
2 2

b b
f

a a

     
  

.  Use this formula to show the maximum height of the projectile is 

 2 2
0

0

sin

2

v
y s

g


   when 

 2
0 sin 2

2

v
x

g


 . 

29. In another event, the ‘sheaf toss’, Jason throws a 20 pound weight for height.  If the weight is released 

5 feet above the ground at an angle of 85° with respect to the horizontal and the sheaf reaches a 

maximum height of 31.5 feet, use your results from the previous exercise to determine how fast the 

sheaf was launched into the air.  Once again, gravity is 232 ft /sg  . 

In Exercises 30 – 33, we explore the hyperbolic sine function, denoted  sinh t , and the hyperbolic 

cosine function, denoted  cosh t , defined below: 

  
  

sinh
2

t te e
t


  and  

  

cosh
2

t te e
t


  

30. Using a graphing utility as needed, verify that the domain of  cosh t  is  ,   and the range of 

 cosh t  is  1, . 

31. Using a graphing utility as needed, verify that the domain and range of  sinh t  are both  ,  . 

32. Show that         cosh , sinhx t t y t t   parameterize the right half of the ‘unit’ hyperbola 

2 2 1x y  . 

Hence, the use of the adjective ‘hyperbolic’.  They are referred to as ‘sine’ and ‘cosine’ because 

   2 2cosh sinh 1t t   while    2 2sin cos 1   .  The hyperbolic sine and cosine mirror the 

traditional trigonometric identities but are built around    2 2cosh sinh 1t t  .  



8.2 Parametric Descriptions for Oriented Curves T8-33 

33. Four other hyperbolic functions are waiting to be defined.  Following the definitions of secant, 

cosecant, tangent, and cotangent, define the hyperbolic secant,  sech t , the hyperbolic cosecant, 

 csch t , the hyperbolic tangent,  tanh t , and the hyperbolic cotangent,  coth t .  Define these 

functions in terms of  sinh t  and  cosh t , then convert them to formulas involving  te  and  te  .  

Consult a suitable reference and spend some time reliving the thrills of trigonometry with these 

hyperbolic functions. 
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Index 

 
A 
acute angle, 1-5, 1-8, 1-20 1-21, 1-39, 1-44, 1-
49, 1-86, 4-5, 4-37, 5-1, 5-13, 5-20, 5-31 
additive inverse, 7-8, 7-9, 7-10, 7-11 
adjacent side, 1-21, 1-23, 1-25, 1-44, 4-11, 4-20, 
4-37, 5-13, 5-31 
amplitude, 2-3, 2-9, 2-10, 2-12, 2-15, 2-20, 2-34, 
2-45,  
angle, 1-3 
     acute, 1-5, 1-8, 1-20, 1-21, 1-39, 1-44,  
1-49, 1-86, 4-5, 4-37, 5-1, 5-13, 5-20, 5-31 
     between two vectors, 7-36, 7-37 
     central, 1-6, 1-7, 1-39, 2-52, 2-54, 2-56 
     complementary, 1-8 
     congruent, 1-20, 3-7 
     convert between measures, 1-10 
     corresponding, 1-20 
     coterminal, 1-3, 1-13, 1-68, 3-4, 3-6, 3-8, 6-7, 
6-8, 6-10, 6-67, 7-14 
     of depression, 1-30 
     of elevation, 1-30, 4-36, 4-37, 5-16 
     of inclination, 1-30 
     initial side, 1-9, 1-13, 1-30 
     measure of, 1-4, 1-6 
     negative measure, 1-9 
     obtuse, 1-5, 1-8, 5-15, 5-31, 5-35, 7-6 
     oriented, 1-9, 1-14, 1-40 
     positive measure, 1-9 
     quadrantal, 1-11, 1-50, 1-87, 5-20, 6-63 
     reference, 1-48, 1-49, 1-53, 1-58, 1-63, 1-70, 
1-73, 1-87, 2-4, 2-6, 2-41, 4-12, 4-17, 6-14 
     standard, 1-27, 1-33, 1-39, 1-50, 1-53, 1-65, 
1-67, 3-5, 3-11, 4-4, 4-6, 4-18, 4-38, 6-16, 6-29 
     standard position, 1-11, 1-39, 1-44, 1-54, 1-
57, 1-63, 1-76, 1-86, 1-89, 3-4, 3-20, 4-4, 4-38, 
5-20, 6-4, 6-27 
     straight, 1-3, 1-5 
     supplementary, 1-8, 5-18 
     terminal side, 1-9, 1-11, 1-14, 1-30, 1-44, 1-
49, 1-54, 1-56, 1-60, 1-63, 1-68, 1-70, 1-76, 1-
86, 1-87, 1-88, 3-4, 3-20, 3-24, 4-39, 6-4, 6-7 6-
11, 6-19, 6-28 
     vertex, 1-3, 1-6, 1-11 
angle-angle-side (AAS), 5-7, 5-13, 5-30 

angle-side-angle (ASA), 5-8, 5-13, 5-30 
angle-side opposite pairs, 5-4, 5-5, 5-7, 5-13, 5-
14, 5-15, 5-30,  
angular speed, 2-55, 2-56, 2-57 
arccosecant, 4-24, 4-26, 4-33 
arccosine, 4-7, 4-9, 4-33, 7-37 
arccotangent, 4-17, 4-18, 4-19, 4-33 
arcsecant, 4-23, 4-25, 4-26, 4-33 
arcsine, 4-4, 4-5, 4-7, 4-8, 4-9, 4-33, 4-52 
arctangent, 4-16, 4-19, 4-33, 4-37, 4-54, 6-16, 6-
54, 7-22 
area 
     of triangle, 5-15, 5-36, 5-37 
     of sector, 2-54, 2-55 
arc, 1-6, 1-39, 1-40, 1-41, 1-43, 1-72, 2-54, 4-4 
arc length, 1-6, 1-7, 2-52, 2-54, 2-56 
argument of complex number, 6-52, 6-56, 6-60, 
6-61, 6-63, 6-65, 6-66, 6-69, 6-71 
argument of function, 2-17, 2-32, 3-26, 4-12, 4-
21, 4-35, 4-40, 4-44, 4-46, 4-54, 4-55, 4-56 
associative property, 7-8, 7-11, 7-12 
Asteroid, 8-10 
asymptote, 2-3, 2-27, 2-28, 2-30, 2-32, 2-33, 2-
34, 2-37, 2-39, 2-41, 2-44, 2-46, 2-47, 4-17, 4-
18, 4-24, 4-25 
 
 
B 
Babylonians, 1-5 
bearing, 5-20, 5-21, 7-1, 7-6, 7-7, 7-21, 7-22 
Bicorn, 8-10 
 
 
C 
cardioid, 6-21, 6-23, 6-40, 6-47 
cartesian coordinate system, 1-39, 2-3, 6-1, 6-3, 
6-4, 6-6, 6-12, 6-21, 7-12, 8-1 
central angle, 1-6, 1-7, 1-39, 2-52, 2-54, 2-56 
circle, 1-2, 1-6, 1-7, 1-12, 1-54, 1-87, 2-53, 2-56, 
5-26, 6-17, 6-23, 6-26, 6-28, 6-31, 6-32, 6-46, 8-
8, 8-13, 8-21, 8-24, 8-26 
     center, 1-6, 1-86, 6-26, 6-28, 6-32, 6-46 
     circumference, 1-6 
     diameter, 2-58, 5-26 
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     radius, 1-2, 1-6, 1-39, 1-87, 2-57, 5-26, 5-31, 
6-28 
     unit circle, 1-2, 1-39, 1-40, 1-43, 1-44, 1-45, 
1-48, 1-53, 1-56, 1-60, 1-63, 1-68, 1-72, 1-86, 1-
91, 2-3, 3-5, 3-21, 4-4, 4-6, 4-39, 7-23, 8-23, 8-
24 
cofunction identities, 3-9, 3-10 
commutative property, 7-8, 7-33, 7-34 
complementary angle, 1-8 
complex conjugate, 6-59 
complex numbers, 6-50 
     argument, 6-52, 6-56, 6-60, 6-61, 6-63, 6-65, 
6-66, 6-69, 6-71 
     modulus, 6-52, 6-57, 6-60, 6-63, 6-69, 6-71 
     operations with, 6-51 
     polar form, 6-55, 6-56 
     powers, 6-63 
     product, 6-60 
     quotient, 6-60 
     rectangular form, 6-52, 6-69 
     roots, 6-66, 6-68 
complex plane, 6-1, 6-50, 6-52, 6-53, 6-68, 6-71 
component form of vectors, 7-2, 7-4, 7-5, 7-15, 
7-21, 7-25, 7-29, 7-32 
congruent angles, 1-20, 3-7 
continuous, 2-3, 2-4, 2-32, 2-43, 4-5, 4-23 
convert between angle measures, 1-10 
cosecant, 1-2, 1-21, 1-32, 1-63, 1-65, 1-67, 1-76, 
1-82, 3-23, 4-22, 4-35 
     equations, 4-43 
     graph, 2-27, 2-41, 2-43, 2-44 
     inverse, 4-1, 4-16, 4-24, 4-25, 4-26 
     properties of, 2-43 
     values of non-standard angles, 1-87 
     values of standard angles, 1-67, 1-70 
cosine, 1-2, 1-21, 1-32, 1-39, 1-43, 1-44, 1-48, 
1-54, 1-63, 1-65, 1-82, 1-87, 3-4, 4-37, 4-40 
     amplitude, 2-10, 2-12 
     as trigonometric function, 1-44 
     domain, 1-45, 4-24 
     graph, 2-1, 2-3, 2-6, 2-17, 2-27, 2-40, 6-30, 
6-32, 6-37 
     inverse function, 4-1, 4-3, 4-5, 4-7, 4-9, 4-11 
     period, 2-7, 2-12, 4-42 
     phase shift, 2-10, 2-12, 2-16, 2-34 
     properties of, 2-8, 2-12 
     range, 1-45 4-55 

     sign of, 1-55 
     symmetry, 1-56 
     values of non-standard angles, 1-87 
     values of standard angles, 1-50, 1-54, 1-67, 
1-70 
     vertical shift, 2-11, 2-12 
corresponding angles, 1-20 
cotangent, 1-2, 1-21, 1-63, 1-65, 1-70, 1-76, 1-
82, 2-31, 4-34 
     domain, 2-31, 
     graph, 2-27, 2-30, 2-32, 2-34, 2-38 
     inverse, 4-1, 4-16, 4-17, 4-19, 4-33 
     period, 2-31, 3-15, 4-43 
     properties of, 2-32 
     values of non-standard angles, 1-87 
     values of standard angles, 1-67, 4-18 
coterminal angles, 1-3, 1-13, 1-68, 3-4, 3-6, 3-8, 
6-7, 6-8, 6-10, 6-67, 7-14 
 
 
D 
degree measure, 1-3, 1-5, 1-10, 1-11, 1-16, 1-32, 
1-50, 1-67, 2-52, 3-9, 5-4, 5-13, 7-15 
DeMoivre’s Theorem, 6-63, 6-66, 6-67, 6-68 
depression, angle of, 1-30 
difference of squares, 1-81, 3-5, 5-37 
direction angle, 7-13, 8-28 
distributive property, 6-51, 7-11, 7-12, 7-33, 7-
34 
domain, 1-45, 1-48, 2-3, 2-4, 2-7, 2-8, 2-27, 2-
29, 2-32, 2-38, 2-41, 2-43, 3-14, 4-2, 4-3, 4-5, 4-
7, 4-10, 4-12, 4-16, 4-17, 4-19, 4-23, 4-25, 4-35, 
4-36, 8-3, 8-14 
dot product, 7-1, 7-32, 7-39, 7-44, 7-45 
     properties of, 7-32, 7-33, 7-34, 7-35 
double-angle identities, 3-19, 3-20, 3-22, 3-26, 
4-21 
 
 
E 
elevation, angle of, 1-30, 1-32, 4-36, 4-37, 5-16 
ellipse, 8-9, 8-14, 8-22 
equations, 1-67, 4-1, 4-33, 4-41, 4-43, 4-52, 4-
53, 4-55, 6-1, 6-3, 6-17, 6-19, 6-26, 6-28, 6-32, 
6-40, 6-44, 6-46 
     solving, 1-68, 1-71, 4-38, 4-40, 4-41, 4-43, 4-
45, 4-52, 4-56 
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equilateral triangle, 1-24, 1-48 
even function, 2-8, 3-3 
even/odd identities, 3-1, 3-3, 3-5, 3-8 
even/odd properties of graphs, 2-8, 3-1 
 
 
F 
Folium of Descartes, 8-10 
force, 7-1, 7-21, 7-26, 7-28, 7-44, 7-45 
function, 1-1, 1-45, 1-55, 2-1 
     argument, 2-17, 2-32, 3-26, 4-12, 4-21, 4-35, 
4-40, 4-44, 4-46, 4-54, 4-55, 4-56 
     definition of, 1-45 
     even, 2-8, 3-3 
     hyperbolic, 8-32, 8-33 
     inverse, 4-3, 4-5, 4-9, 4-16, 4-17, 4-23, 4-24, 
4-33 
     notation, 1-55 
     odd, 2-8, 3-3, 6-54 
     periodic, 2-7, 4-3 
     quadratic, 8-29, 8-32 
     trigonometric, 1-21, 1-26, 1-44, 1-45, 1-48, 
1-63, 1-65, 1-67, 1-70, 1-76, 1-80, 1-82, 1-86, 1-
88, 2-1 
fundamental cycle, 2-3, 2-9, 2-10, 2-11, 2-18, 2-
29, 2-31, 2-34, 2-38, 2-41, 2-43, 6-33 
 
 
G 
guide functions, 2-44, 2-45, 2-46, 2-48 
graphs, 2-3, 2-27 
     amplitude, 2-3, 2-9, 2-10, 2-11, 2-12, 2-13, 2-
16, 2-19, 2-20, 2-34, 2-45, 2-47 
     determining equation of, 2-14 
     midline, 2-11, 2-18, 2-19, 2-20, 2-34, 2-44, 2-
46, 2-48 
     period, 2-3, 2-7, 2-8, 2-9, 2-12, 2-14, 2-16, 2-
18, 2-20, 2-27, 2-31, 2-32, 2-34, 2-37, 2-41, 2-
43, 2-45, 2-47, 2-57, 3-14, 4-34, 4-39, 4-40, 4-
43, 8-20 
     phase shift, 2-3, 2-9, 2-10, 2-12, 2-13, 2-15, 
2-16, 2-20, 2-34, 2-45 
     polar, 6-26, 6-28 
     vertical shift, 2-3, 2-9, 2-11, 2-12, 2-13, 2-20, 
2-34, 2-36, 2-37 
 
 

H 
half-angle identities, 3-1, 3-19, 3-23, 3-24, 3-25, 
5-8, 6-71 
Heron’s formula, 5-30, 5-36, 5-37, 5-38 
horizontal component,7-4 
hyperbolic functions, 8-32, 8-33 
hypotenuse, 1-21, 1-23, 1-24, 1-25, 1-27, 1-32, 
1-44, 4-11, 4-21, 4-36, 4-37, 5-3 
 
 
I 
identities, 1-76, 3-1 
     co-function, 3-3, 3-6, 3-9, 3-10 
     double-angle, 3-19, 3-20, 3-22, 2-23, 3-26, 4-
21 
     even/odd, 3-1, 3-3, 3-5, 3-6, 3-8 
     half-angle, 3-1, 3-19, 3-23, 3-24, 3-25, 5-8, 6-
71 
     power reduction, 3-19, 3-23, 3-24 
     product-to-sum, 3-19, 3-27 
     Pythagorean, 1-2, 1-39, 1-54, 1-55, 1-76, 1-
77, 1-82, 1-83, 1-90, 3-1, 3-5, 3-7, 3-11, 3-12, 3-
21, 3-26, 4-11, 4-12, 4-20, 4-22, 4-27, 4-29, 4-
53, 5-37, 6-17, 8-13, 8-20, 8-22 
     quotient, 1-63, 1-64, 1-65, 1-67, 1-70, 1-76, 
1-77, 1-79, 1-82, 1-88, 3-3, 3-5, 3-12, 3-22, 3-
24, 4-12, 6-12 
     reciprocal, 1-63, 1-64, 1-65, 1-67, 1-70, 1-76, 
1-77, 1-78, 1-80, 1-82, 1-88, 3-3, 3-5, 3-12, 3-
22, 4-26 
     sum and difference, 3-1, 3-3, 3-6, 3-10, 3-11, 
3-13, 3-14, 3-27, 6-71 
     sum-to-product, 3-19, 3-27, 3-28 
     verifying, 1-77, 1-80, 1-81, 1-82, 3-2, 3-5, 3-
22, 3-25 
identity property, 7-8, 7-11 
imaginary axis, 6-52, 6-54, 6-57, 6-63 
imaginary part of complex number, 6-50, 6-57 
imaginary unit, 6-50, 6-52 
inclination, angle of, 1-30, 1-31, 1-32 
initial point of a vector, 7-3, 7-4, 7-5, 7-9, 7-10, 
7-12, 7-25, 7-28, 7-34, 7-39, 7-40, 7-43 
initial side, 1-9, 1-13, 1-30 
inner product 7-32 
inverse functions, 4-1, 4-3, 4-5, 4-9, 4-16, 4-17, 
4-19, 4-23, 4-24, 4-26, 4-33, 4-35 
inverse property, 7-8 
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isosceles triangle, 1-25, 1-46, 5-19, 7-27 
 
 
L 
Law of Cosines, 5-1, 5-30, 5-31, 5-34, 5-36, 5-
37, 7-6, 7-36 
Law of Sines, 5-1, 5-3, 5-4, 5-5, 5-7, 5-9, 5-13, 
5-15, 5-16, 5-18, 5-21, 5-30, 5-32, 5-33, 5-35, 5-
36, 7-6, 7-27, 
lemniscate, 6-45, 6-47 
limacon, 6-40, 6-46, 6-47 
linear algebra, 7-7 
linear speed, 2-55, 2-56, 2-58 
 
 
M 
magnitude of a vector, 7-3, 7-6, 7-8, 7-13, 7-14, 
7-22, 7-23, 7-24, 7-26, 7-27, 7-33, 7-40, 7-41, 7-
44 
magnitude property, 7-33, 7-36 
Mercury, 2-53 
midline, 2-11, 2-18, 2-19, 2-20, 2-34, 2-44, 2-46, 
2-48 
modulus, 6-50, 6-52, 6-57, 6-60, 6-63, 6-69, 6-
71 
multiple angle identities, 3-19 
multiplicative identity, 7-12 
 
 
N 
negative angle measure, 1-9, 1-48 
normalizing vectors, 7-23 
 
 
O 
oblique triangle, 5-1, 5-4 
obtuse angle, 1-5, 1-8, 5-6, 5-15, 5-31, 5-35, 7-6 
odd function, 2-8, 3-3, 6-54 
opposite side, 1-21, 1-32, 1-80, 4-12, 4-20, 6-7, 
6-11 
oriented angle, 1-9, 1-14, 1-40 
orthogonal, 7-32, 7-38, 7-39 
orthogonal projection, 7-40, 7-42, 7-43 
 
 
 

P 
parabola, 6-19, 6-20, 8-5, 8-11, 8-12, 8-23 
parallel vectors, 7-9 
parallelogram, 7-8, 7-10 
parameter, 8-3, 8-22, 8-23, 8-24, 8-25, 8-27 
     eliminating, 8-5, 8-10, 8-11, 8-12, 8-13, 8-19 
parametrization, 8-3, 8-5, 8-19, 8-20, 8-21, 8-22 
parametric equations, 8-1, 8-3, 8-10, 8-12, 8-19, 
8-24, 8-26 
     adjusting, 8-22 
     Astroid, 8-10 
     Bicorn, 8-10 
     Folium of Decartes, 8-10 
     projectile motion, 8-19, 8-28 
     sketching curves, 8-3, 8-4, 8-5 
     Witch of Agnesi, 8-10 
period, 2-3, 2-7, 2-8, 2-9, 2-12, 2-14, 2-16, 2-18, 
2-20, 2-27, 2-31, 2-32, 2-34, 2-37, 2-41, 2-43, 2-
45, 2-47, 2-57, 3-14, 4-34, 4-39, 4-40, 4-43, 8-
20 
periodic function, 2-3, 2-7 
periodicity, 2-1, 4-38, 8-20 
phase shift, 2-3, 2-9, 2-10, 2-12, 2-13, 2-15, 2-
16, 2-20, 2-34, 2-45 
plane curves, 8-1, 8-3 
polar axis, 6-4, 6-5, 6-8, 6-10, 6-12, 6-29, 6-30, 
6-32, 6-34, 6-37, 6-38, 6-44, 6-46 
polar coordinates, 6-1, 6-3, 6-6, 7-16 
     complex numbers, 6-50 
     converting, 6-12, 6-22, 7-16 
     equivalent representations, 6-11 
polar equations, 6-17, 6-20, 6-26, 6-46 
    graphs, 6-26, 6-28, 6-46 
polar form of complex numbers, 6-55, 6-56, 6-
57, 6-60, 6-63, 6-67, 6-68, 6-69, 6-71 
pole, 6-4, 6-5, 6-6, 6-8, 6-9, 6-11, 6-12, 6-15, 6-
18, 6-20, 6-27, 6-28, 6-30, 6-32, 6-34, 6-36, 6-
39, 6-42, 6-44, 6-45, 6-46, 6-65 
positive angle measure, 1-9 
power reduction formulas, 3-19, 3-23, 3-24 
principal unit vectors, 7-21, 7-24, 7-25 
Principle of Mathematical Induction, 6-63 6-64 
product-to-sum formulas, 3-19, 3-27 
projectile motion, 8-28 
Prosthaphaeresis Formulas, 3-27 
Pythagorean conjugates, 1-76, 1-81, 1-82 
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Pythagorean Identities, 1-2, 1-39, 1-54, 1-55, 1-
76, 1-77, 1-82, 1-83, 1-90, 3-1, 3-5, 3-7, 3-11, 3-
12, 3-21, 3-26, 4-11, 4-12, 4-20, 4-22, 4-27, 4-
29, 4-53, 5-37, 6-17, 8-13, 8-20, 8-22 
Pythagorean Theorem, 1-24, 1-26, 1-54, 3-1, 4-
12, 4-21, 5-1, 5-3, 5-4, 5-11, 5-30, 5-31, 5-32, 7-
13 
 
 
Q 
quadrantal angle, 1-11, 1-16, 1-48, 1-50, 1-69, 1-
87, 5-20, 6-63 
quadratic formula, 6-66, 8-29 
quadratic function, 2-1, 4-2, 8-30, 8-32 
quarter marks, 2-9, 2-18, 2-19, 2-20, 2-21, 2-32, 
2-34, 2-36, 2-43, 2-45 
quotient identities, 1-63, 1-64, 1-65, 1-67, 1-70, 
1-76, 1-77, 1-79, 1-82, 1-88, 3-3, 3-5, 3-12, 3-
22, 3-24, 4-12, 6-12 
 
 
R 
radian measure, 1-1, 1-3, 1-4, 1-6, 1-7, 1-8, 1-
10, 1-12, 1-16, 1-32, 1-39, 1-40, 1-43, 1-45, 1-
53, 1-67, 1-68, 1-73, 2-2, 2-28, 2-39, 2-52, 2-53 
range, 1-16, 1-45, 2-3, 2-8, 2-27, 2-30, 2-32, 2-
41, 2-43, 4-2, 4-3, 4-5, 4-7, 4-19, 4-23, 4-25, 4-
55, 5-10, 5-11, 7-37, 8-7, 8-14 
rationalize denominators, 1-25, 1-26, 1-27, 3-26 
ray, 1-3, 1-4, 1-57, 6-4, 6-5, 6-57, 7-34 
     initial point, 1-3 
real axis, 6-52, 6-55, 6-63, 6-67 
real part of complex number, 6-50, 6-51 
reciprocal, 1-22, 1-23, 1-25, 1-64, 2-41, 2-43, 3-
23, 4-20, 4-22, 4-33, 4-34, 4-43, 7-23 
reciprocal identities, 1-63, 1-64, 1-65, 1-67, 1-
70, 1-76, 1-77, 1-78, 1-80, 1-82, 1-88, 3-3, 3-5, 
3-12, 3-22, 4-26 
rectangular coordinates, 6-1, 6-3, 6-12, 6-17, 6-
20, 6-52, 6-53, 7-16 
     converting, 6-12, 6-17, 6-19, 6-20, 6-22, 7-16 
rectangular equations, 6-17, 6-19, 6-31 
rectangular form of complex numbers, 6-18, 6-
52, 6-56, 6-61, 6-63, 6-65, 6-67, 6-69, 6-70 
reference angle, 1-48, 1-49, 1-53, 1-58, 1-63, 1-
70, 1-73, 1-87, 2-4, 2-6, 2-41, 4-12, 4-17, 6-14 
     using to determine sine and cosine, 1-50 

     using to determine function values, 1-70 
resultant vector, 7-5, 7-6, 7-22, 7-26, 7-27 
revolution, 1-3, 1-4, 1-5, 1-6, 1-9, 1-10, 1-12, 1-
14, 1-16, 1-56, 2-53, 2-57, 8-27 
right triangle, 1-20, 1-21, 1-24, 1-27, 1-30, 1-39, 
1-44, 1-48, 1-60, 1-91, 4-33, 4-36, 4-37, 5-1, 5-
3, 5-4, 5-6, 5-10, 5-13, 5-17, 5-19, 7-13 
roots, 6-2, 6-51, 6-60, 6-66, 6-68, 6-71 
rose, 6-44, 6-47 
RPM, 2-58 
 
 
S 
scalar, 7-9, 7-11, 7-14, 7-26, 7-32, 7-33, 7-44 
scalar multiplication, 7-3, 7-9, 7-10, 7-12, 7-14, 
7-25 
     additive identity property, 7-11 
     associative property, 7-11 
     distributive property, 7-11, 7-12 
     identity property, 7-11 
     scalar multiple property, 7-33, 7-36 
     zero product property, 7-11 
scalar product, 7-32 
secant, 1-21, 1-63, 1-70 
     graph, 2-38, 2-44 
     inverse, 4-23, 4-25, 4-25 
     properties of, 2-43 
     values of non-standard angles, 1-87 
     values of standard angles, 1-67 
sector of a circle, 1-12, 2-52, 2-54, 3-5 
side-angle-side (SAS), 5-30, 5-32, 5-36 
side-side-angle (SSA), 5-3, 5-9, 5-13, 5-30 
side-side-side (SSS), 5-30, 5-34, 5-36 
similar triangles, 1-20, 1-22, 1-23, 1-24, 1-60, 1-
91 
simplifying expressions, 3-5 
sine, 1-21, 1-43, 1-44, 1-63, 1-87 
     amplitude, 2-10, 2-12 
     as trigonometric function, 1-44 
     domain, 1-45 
     graph, 2-3, 2-5, 2-17,6-32, 6-34, 6-41 
     inverse function, 4-3, 4-9 
     period, 2-7, 2-12 
     phase shift, 2-10, 2-12 
     properties of, 2-8 
     range, 1-45 
     sign of 1-55 
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     sum and difference identities, 3-11, 3-14 
     values of non-standard angles, 1-87 
     values of standard angles, 1-50, 1-67, 1-70 
     vertical shift, 2-11, 2-12 
sinusoids, 2-5 
     amplitude, 2-10 
     graphing, 2-16, 2-17 
     midline, 2-11 
     period, 2-9 
     phase shift, 2-10 
     properties of, 2-9 
     vertical shift, 2-11, 2-12 
smooth curve, 2-1, 2-3, 2-17, 2-32, 2-33, 2-40, 
2-43 
solving triangles, 1-20, 1-24, 1-27, 4-37, 5-3 
standard angle, 1-27, 1-33, 1-39, 1-50, 1-53, 1-
65, 1-67, 3-5, 3-11, 4-4, 4-6, 4-18, 4-38, 6-16, 6-
29 
standard position, 1-11, 1-39, 1-44, 1-54, 1-57, 
1-63, 1-76, 1-86, 1-89, 3-4, 3-20, 4-4, 4-38, 5-
20, 6-4, 6-27 
static equilibrium, 7-28 
straight angle, 1-3, 1-5 
sum and difference identities, 3-1, 3-3, 3-6, 3-
10, 3-11, 3-13, 3-14, 3-27, 6-71 
sum-to-product formulas, 3-19, 3-27, 3-28 
supplementary angle, 1-3, 1-8, 5-18 
symmetry, 1-49, 1-56, 2-30, 2-31, 3-1, 6-32, 6-
39, 6-45 
 
 
T 
tangent, 1-21, 1-63, 1-70, 6-53 
     asymptote, 2-28 
     graph, 2-27, 2-32, 2-34 
     inverse function, 4-16, 4-19 
     period, 4-43 
     properties of, 2-32 
     sum and difference identities, 3-13, 3-14 
     values of non-standard angles, 1-87 
     values of standard angles, 1-67 
terminal point, 7-3, 7-4, 7-5, 7-8, 7-10, 7-13, 7-
15, 7-23, 7-40, 7-43, 8-19 
terminal side, 1-9, 1-11, 1-14, 1-30, 1-44, 1-49, 
1-54, 1-56, 1-60, 1-63, 1-68, 1-70, 1-76, 1-86, 1-
87, 1-88, 3-4, 3-20, 3-24, 4-39, 6-4, 6-7 6-11, 6-
19, 6-28 

trigonometric equations, 1-67, 4-1, 4-33, 4-52 
     solving, 1-68, 1-71, 4-38, 4-40, 4-45, 4-52 
trigonometric identities, 1-76, 3-1 
     co-function, 3-3, 3-6, 3-9, 3-10 
     double-angle, 3-19, 3-20, 3-22, 2-23, 3-26, 4-
21 
     even/odd, 3-1, 3-3, 3-5, 3-6, 3-8 
     half-angle, 3-1, 3-19, 3-23, 3-24, 3-25, 5-8, 6-
71 
     power reduction, 3-19, 3-23, 3-24 
     product-to-sum, 3-19, 3-27 
     Pythagorean, 1-2, 1-39, 1-54, 1-55, 1-76, 1-
77, 1-82, 1-83, 1-90, 3-1, 3-5, 3-7, 3-11, 3-12, 3-
21, 3-26, 4-11, 4-12, 4-20, 4-22, 4-27, 4-29, 4-
53, 5-37, 6-17, 8-13, 8-20, 8-22 
     quotient, 1-63, 1-64, 1-65, 1-67, 1-70, 1-76, 
1-77, 1-79, 1-82, 1-88, 3-3, 3-5, 3-12, 3-22, 3-
24, 4-12, 6-12 
     reciprocal, 1-63, 1-64, 1-65, 1-67, 1-70, 1-76, 
1-77, 1-78, 1-80, 1-82, 1-88, 3-3, 3-5, 3-12, 3-
22, 4-26 
     sum and difference, 3-1, 3-3, 3-6, 3-10, 3-11, 
3-13, 3-14, 3-27, 6-71 
     sum-to-product, 3-19, 3-27, 3-28 
     verifying, 1-77, 1-80, 1-81, 1-82, 3-2, 3-5, 3-
22, 3-25 
trigonometric ratios, 1-20, 1-21, 1-22 
 
 
U 
unit circle, 1-2, 1-39, 1-40, 1-43, 1-44, 1-45, 1-
48, 1-53, 1-56, 1-60, 1-63, 1-68, 1-72, 1-86, 1-
91, 2-3, 3-5, 3-21, 4-4, 4-6, 4-39, 7-23, 8-23, 8-
24 
unit vector, 7-1, 7-21, 7-23, 7-24, 7-25, 7-28, 7-
41, 7-42 
 
 
V 
vectors, 7-1 
     addition, 7-5, 7-7, 7-8, 7-10, 7-12, 7-25 
     additive identity, 7-10, 7-12 
     additive inverse, 7-9, 7-10 
     angle between, 7-36, 7-37 
     applications, 7-21, 7-26 
     associative property, 7-8, 7-10, 7-12 
     commutative property, 7-8, 7-9 
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     component form, 7-2, 7-4, 7-5, 7-15, 7-21, 7-
25, 7-29, 7-32 
     decomposition theorem, 7-24 
     direction, 7-14 
     direction angle, 7-13, 8-28 
     dot product, 7-32, 7-33, 7-39, 7-45 
     horizontal component, 7-4 
     identity property, 7-8 
     initial point, 7-3, 7-4, 7-5, 7-9, 7-10, 7-12, 7-
25, 7-28, 7-34, 7-39, 7-40, 7-43 
     inner product, 7-32 
     magnitude, 7-3, 7-6, 7-8, 7-13, 7-14, 7-22, 7-
23, 7-24, 7-26, 7-27, 7-33, 7-40, 7-41, 7-44           
     normalizing, 7-23 
     orthogonal, 7-32, 7-38, 7-39 
     orthogonal projection, 7-40, 7-42, 7-43 
     parallel, 7-9 
     principal unit vector, 7-24 
     resultant 7-5, 7-27 
     scalar multiplication, 7-9, 7-10, 7-25 
     scalar product, 7-32 
     standard position, 7-12 
     subtraction, 7-9, 7-10 

     terminal point, , 7-3, 7-4, 7-5, 7-8, 7-10, 7-13, 
7-15, 7-23, 7-40, 7-43 
     unit vector 7-1, 7-21, 7-23, 7-24, 7-25, 7-28, 
7-41, 7-42 
     vertical component, 7-4 
     zero vector, 7-8, 7-9 
velocity, 7-6 
verifying identities, 1-77, 1-80, 1-81, 1-82, 3-2, 
3-5, 3-22, 3-25 
vertex of an angle, 1-3, 1-6, 1-11 
vertical component, 7-4 
vertical shift, 2-3, 2-9, 2-11, 2-12, 2-13, 2-20, 2-
34, 2-36, 2-37 
 
 
W 
Witch of Agnesi, 8-10 
work, 7-44, 7-45 
 
 
Z 
zero product property, 7-11 
zero vector, 7-8, 7-9
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